
The magmaOffenburg 2016 RoboCup 3D
Simulation Team

Klaus Dorer, Jens Fischer, Stefan Glaser, Duy Nguyen, Michael Obrecht,
David Weiler1

Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany

Abstract. After having described many different aspects of our team
software in previous years, in this paper we take the freedom to describe
the magmaChallenge framework provided by the magmaOffenburg team.
The framework is used as a benchmark tool to run different challenges like
the running challenge in 2014 or the kick accuracy challenge in 2015. This
description should serve as a documentation to simplify the maintenance
by the community and to add new benchmarks in the future.

1 Introduction

One important aspect of RoboCup is its strong community. This community is
intended to be an open community. It lives from efforts teams spent outside their
own code into the infrastructure used. One such effort is the creation of a bench-
mark framework in which it is relatively simple to define new benchmarks using
the 3D soccer simulation. The magmaChallenge software is such a framework
openly available at our github page [1]. In this document we describe the overall
architecture of magmaChallenge (Section 2), the benchmark class design 3, the
frontend from a user perspective 4 and the benchmarks included so far 5.

2 Architecture

The overall architecture of magmaChallenge is shown in Figure 1. In order to
run benchmarks, one first requires the soccer simulation server software rc-
ssserver3d [4] available at [2]. RoboViz is required to visualize the action of
the robots and is available at [1]. The agent component is the robot control
software that is benchmarked and will typically be provided by the user of mag-
maChallenge. Example agent software is provided at [3].

2.1 Proxy

The proxy is a slightly modified version of the magmaProxy available at [1]. The
original proxy is provided as a jar file in folder lib. Modifications are implemtend
in package magma.tools.benchmark.model.proxy and includes three changes:



Fig. 1. Architecture of magmaChallenge benchmark tool.

– It searches the perception of agents for force resistance perceptions in order
to provide information whether the legs of an agent touch the ground.

– It blocks action messages containing a beam command, since beaming is not
allowed during benchmarks.

– It adds beam commands to the action messages in case the magmaChallenge
wants the agent to be beamed. This can be used in cases, where the drop
height of an agent needs to be specified, which is not part of the monitor
protocol.

2.2 MonitorRuntime

The monitor runtime is a component that connects to the monitor port of the
soccer simulator in order to get ground truth of the simulation situation. It
also allows to modify the simulation with the commands specified in the mon-
itor protocol. The commands include beaming the ball with three position and
three speed coordinates, beaming a player with three position coordinates and
the amount of z-rotation (the z coordinate seems to be ignored by the server),
commands for changing the playmode, especially for kickoff and some other com-
mands specified in the monitor protocol (see IServerCommander interface). The
monitor runtime has not yet been released as source on github and is provided
as monitorRuntime.jar.

2.3 RoboVizDraw

RoboVizDraw is a small utility that provides access to roboViz’ capability to
overlay drawings into the soccer visualization. Its commands include drawing



points, lines, circles, spheres, polygons, annotations and selecting agents. It is
provided as utility inside the monitorRuntime.jar.

3 Design

Figure 2 shows the design of the magmaChallenge. The overall architecture is a
model-view-controller architecture. In this chapter we only detail the model part
and only the important classes within it. The shaded area contains the classes
of the magmaChallenge framework.

Fig. 2. Design of the model component.

The framework cares for launching the server and the agent or agents that
should participate. It will detect, if an agent is connecting directly to the server
not using the proxy, which is not allowed. It will also run a specified number of
oversampling runs, if required by the benchmark.

3.1 Referee

The referee classes specify the rules of a benchmark. A referee is triggered by
the monitor runtime each time it receives an update from the server. The on-
DuringLaunching() and onStartBenchmark() methods should be overwritten to
specify the setup of a benchmark. The onDuringBenchmark() method defines
the rules of a benchmark while it is running and when it is finished. If it returns
true, the benchmark is over. The onStopBenchmark() method is then called to
calculate the utility of the benchmark run.



3.2 Results

The result classes contain benchmark specific results. SingleResult represents the
result of a single benchmark run. TeamResult is the result of one team averaged
over a specified number of single results. The benchmark contains a list of team
results, one for each competing team in a challenge.

3.3 Component Factory

The monitor runtime allows to inject an abstract factory to use for creating
its subcomponents. This is used in the kick benchmark and run benchmark to
create the proper referee component.

3.4 Other

The ServerController is a utility that allows to start, stop or kill a soccer sim-
ulation server instance. Class SinglePlayerLauncher allows to start an instance
of an agent by calling a Unix shell script. Class TeamConfiguration holds all
team specific benchmark configruation information. Finally, class RunInforma-
tion contains all information required for a single benchmark run.

4 Front-end

Figure 3 shows the front-end of magmaChallenge, here for the kick challenge for
a single team. The drop-down box allows to select the benchmark that should
be run. Right of it, the values of some parameters can be specified. The table’s
rows will show all teams participating in a challenge. The columns specify team-
specific and benchmark-specific configuration as well as diagnostic information
opened when clicking the button in the status column.

The button bar has following buttons:

– Open Start Script... Opens a file open dialog to select a start script of a
single team for which the benchmark should be run.

– Open Competition... Opens a file open dialog to select a configuration
file that specifies the parameters for each team.

– Test Runs a test for each team in the table. The test will start a single run
of the the benchmark for each team and stop it after a short time. The test is
to make sure that the software of all participating teams works as expected.

– Competition Will run a complete competition, i.e. the selected benchmark
for each team in the table.

– Stop Will stop the current competition/benchmark after the next oversam-
pling run is finished.

– Stop Server Will stop or kill the currently running rcssserver3d.
– About Will show author and version information.



Fig. 3. magmaChallenge front-end (here for the kick challenge).

5 Benchmarks

In this section we describe the benchmarks that are available so far.

5.1 Run Challenge

Our league has committed itself to be the first league that has running robots.
One measure of this has been a run challenge in RoboCup 2014.

Requirements Teams that want to participate have to provide the following:

– A start script with name ’startChallengePlayer.sh’ that starts a single player
of the team which runs forward as fast as it can. The script has to accept
the server ip and a port to connect to. Example: ./startChallengePlayer.sh
127.0.0.1 3110

– No beams permitted (commands including a beam will be entirely ignored
by the server).

– The walk has to be ’human like’ (no strange crawling or saltos or similar,
judged by human)

Evaluation The score of the team is evaluated as the sum of

– the speed (in m/s)
– the relative amount of time both legs are off the ground.

The speed is measured in a 10 seconds run. The time starts when the player
crosses the start line or 4 seconds after the player was beamed (by the automated
referee) to its start position (-13.5, 0) which is 0.5 m behind the start line (which
ever happens first). The speed is then the distance in only x-direction divided by
the time to give m/s. If a player falls, this try stops and 2 meters are subtracted
as a penalty from the player’s current position (but at least 0 m overall distance).
The time accounted in such a case will be the full 10 seconds. A player is decided
to be fallen if the z part of the up vector is less than 0.6 or the z coordinate of
the torso center is below 0.25.



The relative amount of time both legs are off the ground is determined by
counting the cycles in which all (both) force sensors have a length of the force
less than 0.01 divided by the number of available cycles (within the 10 seconds
run). Both measures are averaged out in 10 trials for each participating team.
The final sum is rounded to 3 digits. Equal scores will result in the same place.

5.2 Kick Accuracy Challenge

The goal of the kick challenge is to measure the precision of kicks of increasing
length with respect to where the ball stops.

Requirements Teams that want to participate have to provide the following:

– A start script with name ’startChallengePlayer.sh’ that starts a single player
of the team walks to the ball and kicks it to the center of the field. The
script has to accept the server ip and a port to connect to as well as the x
and y coordinates of the player’s initial position it is beamed to. Example:
./startChallengePlayer.sh 127.0.0.1 3110 -9.5 2.0

– No beams are permitted (commands including a beam will be entirely ig-
nored by the server).

Evaluation The score of the team is evaluated as the average of the distances to
the target position. The accuracy is measured in ten kicks from random positions
in the own half and a 45 degree cone seen from the destination spot. The start
positions of the player are of ever increasing distance (3 - 12 meters) to the
destination spot. They are the same for all teams. The destination spot is the
center of the field. The time starts when the player gets closer than 0.5 m to
the ball or 3 seconds after the player was beamed (by the automated referee)
to its start position roughly 1 m behind the ball (which ever happens first). An
attempt is over, if

– the player leaves a 2 m circle around the initial ball position,
– the ball leaves that circle and stops,
– the ball does not leave the circle 5 seconds after start.

The final sum is rounded to 3 digits. Equal scores result in the same place.

References

1. https://github.com/magmaOffenburg
2. http://simspark.sourceforge.net/wiki/index.php/Installation on Linux
3. http://simspark.sourceforge.net/wiki/index.php/Agents
4. O. Obst and M. Rollmann, SPARK A Generic Simulator for Physical Multiagent

Simulations Computer Systems Science and Engineering, 20(5), September 2005


