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Abstract. This paper describes the magmaOffenburg 3D simulation
team trying to qualify for RoboCup 2013. While last year’s TDP focused
on different ways how robot behavior can be defined in the magmaOf-
fenburg framework this year we focus on how we statistically evaluate
new features on distributed systems. We also show some results gained
through such analysis.

1 Introduction

This year our focus is on our approaches to get results from changes to our
agents. We have developed two ways how to get statistically significant results.
For learning runs within one virtual machine as well as for one versus one games
on one virtual machine for each agent but located on a single computer we use
bash scripts to automate runs and games. For games 11 versus 11 distributed
over a cluster of machines we created Codie a Java based application based on
the Java job distribution framework (JDF).

Section 2 shows how optimization and learning is speed up by parallel eval-
uation of utilities as well as some results gained. In section 3 we show how new
features are evaluated in one versus one games. Section 4 introduces our job
distribution application Codie for distributing game runs on a cluster.

2 Learning Runs

A major source of time consumption for learning runs in non-deterministic do-
mains like RoboCup is that utility calculation only gets reliable after running the
same experiment multiple times. In order to speed this up, our existing frame-
work for learning (see TDP 2012) was extended to allow parallel measurement of
utilities for a single individuum. The major change has been to separate utility
calculation from the representation of an individuum (see Figure 1). Each Util-
ityCalculation component runs in its own thread of control. It launches its own
soccer server, measures the utility and reports back the result to its individuum.
It also cares for hanging server instances, by killing and restarting it again.

Results of different optimization runs are shown in Figures 2-4. In this setup
we used simulated annealing, genetic algorithms and tabu search to optimize
the last phase of our kick behavior. We vary start positions of the agent so that



Fig. 1. Before and after separation of inidviduum and utility calculation.

it has to make some steps to the ball before kicking. Since kicking is somewhat
unreliable, we have to run many measurements to get a useful utility. On our i7
Hardware we can typically run 30 utility calculations in parallel which is what
we did for each individuum.

The simulated annealing run started with a manually found parameter set for
kicking with an average utility of 3.7m. Running 1000 annealing steps worsened
the result no matter what cooling strategy was used (Figure 2). An overall 30.000
kicks have been performed in this run without any interruption of the run.

Fig. 2. Utility of a simulated annealing run to optimize kick parameters.

In the genetic optimization run each population consisted of 50 individuums
breeded over 100 generations using Monte Carlo selection, multi-crossover re-
production and random mutation (0.2 individuum selection, 0.1 gene selection).
Figure 3 shows the decreasing diversity of the agents and the increasing utility
(distance) of the kick. The diagram was created from 300.000 kicks running over
one weekend without interruption. The final utility was an average kick distance
of 3.9m.

In a third run, tabu search was used to optimize kick parameters. Start state
has been the manually found working parameters mentioned above. Figure 4 does
not show single results of one parameter setup averaged over 30 runs. Instead to
also get insight into what parameter area works good on average, 100 consecutive
parameter settings were averaged. Each point in the diagram is an average of
3000 kicks performed by 100 slightly different parameters variations.



Fig. 3. Utility and gene-diversity of genetic optimization of kick.

Fig. 4. 100 run average utility of tabu search.

In sum, 132.000 kicks have been performed in this run resulting in an average
utility of 4.4m.

3 Evaluation Runs

The learning framework is useful also in evaluation of single game situations.
Figure 5 shows the result of evaluating the reliability of our walk. In this scenario
agents started to walk straight to the desired forward speed (2 seconds), then
switched to the desired forward and backward speed for 3 seconds and continue
with just forward walk for another 2 seconds. Each run recorded the speed and
if the agent did fall. The x-axis in the diagram shows the intended forward
speed (in %), the y-axis the corresponding intended sideward speed. The color
represents the number of falls, with green no falls and red more than 5 falls. Each
point in the diagram is averaged over 20 runs. It is clearly seen that problems
start with 90% forward speed.

In order to evaluate features in whole games, the framework needed to be
extended. Figure 6 shows the setup of such game runs. First a trainer compo-
nent had to be created that is able to start and stop games and get the result.



Fig. 5. Reliability of walk with increasing intended forward and sideward speed.

It is built using the monitor protocol of the server. Second, additional bash
scripts have to make sure that server, agents and trainer are started and prop-
erly cleaned up after the game in all situations and error conditions. Finally,
scripts for automatically evaluating the results helped to speedup the process.

Fig. 6. Architecture for evaluating one versus one games.

Table 7 shows a couple of results gained through running series of games. In
such series, two identical agent versions play one half time against each other.
Just that the one feature to look into is added to the agent called team1. It
shows that the kick learned through tabu search significantly improves game
play as did two other features. The Walk estimator feature did not improve
game play, but made it nevertheless into our code since it is much more general
in its implementation. The game series made sure that we did not introduce any



critical mistake. The varying number of games is due to the fact that we did not
restart games in which the server was hanging. Initially half of the games were
played left to right, the other half right to left. After many games there was no
preference to any side visible in the data.

Fig. 7. Selected results of game series.

4 Codie

Codie is a Java application that simplifies the distribution of games on a cluster.
It makes use of the JPPF framework to distribute jobs on a cluster of computers
(Figure 8). Special plugins can be developed to support domain specific require-
ments of runs. The RoboCup plugin e.g. makes sure that the server is up and
running before the players are started. It also cares for collecting the results from
the Trainer job.

Fig. 8. Architecture of Codie.



Features include automatic runs of games, storing results in a database, sta-
tistical evaluation of results, definition of service levels of jobs and many more.
A command line version is available to start remote controlled game runs.

5 Team

The magmaOffenburg team:

– Klaus Dorer (Team leader)
– Stefan Glaser
– Maximilian Krög
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