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Abstract. This paper describes the magmaOffenburg 3D simulation
team trying to qualify for RoboCup 2009. It focuses on two distinctive
features of the team: decisions making using extended behavior networks
and its software architecture and implementation in Java to open the
simulation for the Java community.

1 Introduction

The magmaOffenburg team is the successor team of the 2D simulation league
teams magmaFreiburg (2nd 1999, 5th 2000), living systems (13th 2001) and mag-
maFurtwangen (23rd 2003). One of its main distinctive features has been and
still is its decision making using extended behavior networks [4]. This will be
described in more detail in section 2.

One main goal of our work is to simplify the creation of teams using Java.
Section 3 describes the steps taken to achieve this goal. We hope that in the
competition we can show that teams written in Java are well competive and
that, for example, the disadvantage of Java performance is non-existing.

2 Decision Making

Decision making in the magmaOffenburg team is done using extended behav-
ior networks (EBNs) [4]. They provide support for reactive and goal-directed
behavior selection. This is done using a mechanism of activation spreading to
calculate an estimate of the expected utility of each behavior rule combined with
situation-dependent calculation of executability of behavior rules. An example
network for the soccer domain is shown in figure 1.

EBNs extend original behavior networks [6] in numerous ways. EBNs allow
the explicit representation of goals with dynamic, i.e. situation-dependent, util-
ity function. Goals may be prioritized by a static importance value, but also by
a dynamic relevance. This helps an agent to focus on the goals that are relevant
in a specific situation. Experiments in the RoboCup 2D simulation domain have
shown that the performance of a team of agents with dynamic goals was signifi-
cantly higher compared to an identical team with static goal importance. While
the static team scored 6.6 goals per game the dynamic team scored 10.8 goals
on average during 30 games played against each other.



EBNs also extend Maes networks through the introduction of continuous
state-propositions to exploit additional information in continuous domains. This
affects the calculation of preconditions, spreading of activation and calculation
of goal relevance. All of them use fuzzy connectors to combine multiple precon-
ditions and activations respectively. Again experiments in the RoboCup domain
showed a significant improvement of agents using continuous state-propositions
where ’discrete’ agents scored 0.7 goals playing against ’continuous’ agents that
scored 4.9 goals on average during 30 games.

EBNs are further able to do concurrent behavior selection [2]. I.e. the network
can decide within one decision cycle to execute multiple actions concurrently if
they do not interfere. In order to decide if behaviors interfere, resources are
introduced into the model. Two behaviors do not interfere if they do not use any
resource in common or if the resources they both use are sufficiently available.
In the RoboCup domain an agent may speak, run and turn its head within
one decision cycle. Since the number of cycles an agent can communicate is
restricted to 4% of all cycles and because separate turning of the head relative
to the body was only performed in about 8% of all cycles, concurrent behavior
selection effectively only took place in 2% of the cycles. Despite this, the team
using concurrent behavior selection scored significantly more goals (4.3) than
the team using serial behavior selection (2.4).

Most decision mechanisms for agents only have influence on the decision
which behavior the agent should perform, but not on the behavior execution
itself. In biological systems, however, the determinedness of a decision has in-
fluence on the execution of a behavior. “Intensity and endurance of an activity
is determined by the volition strength of the goal intention” [5]. So the more
decided a human is to perform a behavior, the more intense is the execution.
A measure for the decidedness of EBNs to perform a behavior is the activa-
tion value which can be used to influence the intensity of behavior execution.
Experiments with influencing the “runToBall” behvior to trade off speed ver-
sus stamina showed a significantly higher performance of the parametrized team
(11.2 goals) compared to the static team not using influence of decidedness on
behavior execution(8.9 goals) [2].

Further experiments with the RoboCup simulator showed that when adding
an increasing level of noise to the sensor input of the agents, EBNs show a
graceful degradation of their performance.

Comparing EBNs with the original approach of Maes in the RoboCup domain
results in a significant improvement of the agents. In direct comparison during
18 games Maes-agents scored 0.1 goals while EBN-agents scored 8.9 goals on
average. This is remarkable since both agents used the same set of perceptions
and behaviors. The only difference stems from improvements in decision making.

Finally EBNs are an interesting approach to model human decision making
that deviates from rational decision making of decision theory [1]. EBNs have
been successfully used to reproduce findings of Kahneman and Tversky on human
decision making which led to the formulation of prospect theory and was awarded



the Nobel prize for economic sciences in 2002 [8]. This will be needed in 2050
when playing against a human team. For more details on EBNs see [3].

The 3D simulation domain creates a couple of new challenges to decision
making using EBNs. One problem is that other than in the 2D simulation domain
behaviors like kicking need some time to finish. This means that on the one hand
side the decision making should be more inert, not changing its decision for
kicking after one cycle. On the other side it should still be possible to interrupt
a behavior at certain steps if it does no longer make sense. Other extensions
currently investigated concern the detection of effect deviation that should be
used to influence decision making of the EBN.

Fig. 1. Extended behavior network for the soccer domain

3 Architecture

One main purpose of our work is to open the 3D simulation for the Java commu-
nity. We hope that many teams will benefit from our work as we have benefited
enormously by the source code release of the Little Green Bats team during our
development [7]. This should be achieved with a number of measures taken into
account during designing the team:

– Layered, component-based architecture
– Java as implementation language
– JUnit tests to ensure stability
– Releasing source code after the competition

In this section we will mainly focus on the design and architecture of the
team.



3.1 Layered Architecture

The layered architecture of our team is shown in figure 2. Currently our agents
consist of five layers: communication, protocol, model, control and decision mak-
ing.

These layers are designed and implemented to avoid dependencies from lower
layers to higher layers. This has the advantage for other teams using our code
that they can decide to build on any of the layers we provide. Some teams might
choose to just reuse the communication layer, others will want to just implement
their own decision making. The package structure corresponds to these layers so
that also technically it is easy to setup a project on any layer.

Fig. 2. Layered, component-based architecture of the magmaOffenburg team.



Information flow from lower to higher layers is achieved using the observer
design pattern to keep lower layers independent from higher layers. Other com-
ponents interested in state change of one of our componentes simply attach
themselves as observers to the component. This way we implemented, for exam-
ple, a GUI component showing the world model that is updated whenever the
worldmodel is changing. The world model is completely independent of the GUI
and the GUI is only loosely coupled to the world model (see next section).

3.2 Component-based Architecture

In addition to allow other teams to build on any layer of the architecture we
choose a componente-based architecture to allow other teams also to exchange
any of the components with their own implementation.

Interfaces are used to establish loose coupling of the components. Many com-
ponents provide already loosly coupling to the other components like decision
making, believe, behavior, world model, agent model, connection. Current work
includes removing tight couplings of remaining components so that each compo-
nent can be replaced with other team’s own implementations.

Dependency injection is used to setup the components and their dependen-
cies. This means that the overall structure of the system can simply be generated
by creating the desired components and pass them to dependent components.
Currently this is done in the RoboCupClient class but can easily be overwritten
by other teams.

Dependency injection also simplifies creation of unit tests for components.
Mocks can be used instead of dependent components to simplify the creation of
test fixtures enormously. They are simply injected instead of the real components
to control the behavior of components not under test. Our own unit tests make
heavy use of this.

4 Team

The magmaOffenburg team:

– Klaus Dorer (Team leader)
– Mathias Ehret
– Stefan Glaser
– Thomas Huber
– Simon Raffeiner
– Srinivasa Ragavan
– Ingo Schindler

Our project started four month ago in October last year. Although progress
has been excelent, we are currently not yet able to play competitively as the
logfile shows. However, with another four months to go we are confident to get
to a competitive level of game play.
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