
Agent-Oriented Software Engineering for Successful TAC 
Participation

Clemens Fritschi, Klaus Dorer 
living systems AG 
Humboldtstr. 11 

D-78166 Donaueschingen, Germany 
+4977189870 

{clemens.fritschi, klaus.dorer}@living-systems.de 
Tracking Number: 325 

 
ABSTRACT  
Simplified modeling of complex domains is one of the many 
advantages of multi-agent systems that is abundantly mentioned. 
In this paper we describe our approach for an efficient design and 
implementation of multi-agent systems using agent oriented 
methodologies and tools. We demonstrate the strength of this 
approach taking the example of the TAC domain. The trading 
agent competition (TAC) domain is a challenging e-marketplace 
domain for autonomous auction agents. A competition with 19 
participants from 9 countries was held for the second time in 
October 2001 in Tampa, Florida. The development process turned 
out to be not only very effective with respect to time but also with 
respect to success with the living agents team finishing as the 
highest scoring team in the competition. 

Categor ies and Subject Descr iptors 
I.2.11 [Distr ibuted Ar tificial Intelligence]: Intelligent agents, 
Multiagent systems. 

General Terms 
Design, Economics. 

Keywords 
Agent-based software engineering, bidding and bargaining agents, 
electronic commerce, methodologies and tools, adaptive profit 
optimization 

1. INTRODUCTION 
With the increasing number of agent systems and approaches to 
achieve intelligent autonomous behavior the need for benchmark-
ing domains in which different agent systems can be compared to 
each other became more and more evident. One early example of 
such a domain is the RoboCup domain, in which teams of 
autonomous agents compete in simulated soccer since 1997 

(www.robocup.org).  

An especially interesting domain for business agents is the trading 
agent competition (TAC). It was introduced in 2000 by a team led 
by Michael Wellman and Peter Wurman to provide a complex 
e-marketplace domain where agents bid in online simultaneous 
auctions for complimentary and substitutable goods [Wellman et. 
al., 2001]. At EC’01, for a second time the competition was 
organized in which 19 teams of autonomous agents from 9 
countries competed. Running through a qualification and seeding 
round, 16 teams were admitted to the semi-finals and 8 teams 
qualified for the finals. 

In this paper we describe the process of efficiently designing and 
creating the highest scoring agent team living agents1 and the 
strategy used by the agents to achieve this success. We give a 
detailed description of the application of an agent-oriented 
software engineering methodology and give some insight into the 
tools that supported us in this. 

The remainder of this paper is organized as follows. Section 2 
briefly describes the TAC domain. Section 3 presents the living 
agents team with descriptions of the agent-oriented development 
process and the strategy used. Section 4 gives some results of the 
development process and the TAC competition. Finally, section 5 
concludes and presents suggestions for future research. 

2. THE TAC DOMAIN 
In the TAC domain, autonomous travel agents have to organize a 
trip for (simulated) clients by purchasing flight, hotel and enter-
tainment tickets in simultaneous auctions. In each instance of 
auction rounds 8 teams of agents compete in organizing an 
optimal trip for 8 clients each. The trip includes an inflight ticket 
to Tampa, up to 4 nights stay in a hotel, some optional entertain-
ment tickets and the flight back. The preferences of the clients are 
randomly assigned by the auction server at the beginning of an 
auction round. They include the desired days of stay, how much 
the client is willing to pay additionally for the luxury hotel and 
what entertainment the client prefers. The auction servers, located 
at the University of Michigan, maintain the current auction states, 
execute bids of the agents and answers requests on price quotes. 
The tickets are sold in 28 auctions of 3 different types. 

                                                                 
1 For technical reasons our team’s name was spelled livingagents 

during the competition. 

 

 
 



• Hotel: There are 2 types of hotels the clients can stay: The 
Tampa Towers (luxury) and the Shoreline Shanty  (econ-
omy). Clients stay between 1 and 4 nights and have individ-
ual preferences for luxury or economy rooms. Each hotel 
has 16 rooms and each night must be purchased in a sepa-
rate auction. The auction is a 16th –price English auction, 
where the highest 16 bids get a hotel room at the price of the 
16th highest bid. Hotel rooms may not be resold and bids 
may not be withdrawn in hotel auctions. Hotel auctions end 
at an unspecified time. 

• Flight: There are 8 auctions for flights: 4 for inflights on 
days 1 to 4 and 4 for outflights on days 2 to 5. The supply of 
tickets is unlimited, so sending a bid at the ask price or 
above will always result in a ticket. As opposed to last year, 
the ask price for a flight was not approximately constant 
over the time of an auction, but rose continuously especially 
at the end of an auction. This gave an advantage for early 
decisions on flights at the risk of not succeeding in buying 
all desired hotel rooms. 

• Enter tainment tickets: There are 3 types of entertainment 
tickets available on each of the first 4 days: Tickets for a 
museum, an amusement park and alligator wrestling. The 
participating teams initially receive a random endowment of 
tickets. The tickets are then bought and sold in continuous 
double auctions, meaning that whenever a bid is placed at 
another team’s sell price the deal is performed. 

The goal is to maximize customer satisfaction on one hand and to 
minimize one’s own expenditure on the other hand. Both are 
taken into account when calculating the final score for a team 
serving 8 clients: 

score = Σ clientUtilityi – costForTickets, where 

clientUtility = 1000 – travelPenalty + hotelBonus + funBonus 
 

where a travelPenalty is assigned for each day the client can not 
stay, but desired or additionally has to stay. The hotelBonus is 
assigned if the client stays in the luxury hotel and the funBonus is 
assigned for each desired entertainment ticket available. 

The challenge is to bid in 28 simultaneous auctions for an optimal 
allocation of tickets, where the results of auctions depend on each 
other. A cheap flight ticket, for example, bought early in the flight 
auction could turn out to be counter productive if later in the 
auction hotel prices explode for the first night of stay. A flight on 
the following day could have revealed a higher overall utility.  

More detailed descriptions of the TAC domain and auction 
mechanisms can be found in [Wellman et. al., 2001; Stone et. al., 
2001; Greenwald & Stone, 2001] or at the TAC homepage at 
ht t p: / / auct i on2. eecs. umi ch. edu. 

3. L IVING AGENTS DESIGN 
The living agents team is based on the living agents runtime 
system (LARS) of the living systems AG. LARS-agents operate in 
various domains ranging from research domains such as TAC or 
RoboCup to various operating business platforms in the areas of 
adaptive profit optimisation for the logistics and finance industry. 
While the agent technology itself provides the foundation for such 

a broad applicability, the efficient application of agents to various, 
complex domains can be considerably improved with the use of 
agent oriented software engineering methodologies and tools. 

Therefore, we first explain the process of agent development 
using the example of our TAC team creation. In the second part of 
this chapter we give the details on the domain specific strategy 
incorporated into the agents. 

3.1 Agent Development 
To be able to deal with increasingly complex domains, high-level 
abstractions, object oriented analysis and design for instance, have 
been introduced to model and implement complex systems. 
Specialized methods have been developed to document and 
support those software engineering methods. It can be argued 
[Jennings, & Wooldridge, 2001; Weiß, 2001] that agent oriented 
software engineering is a further step in advancing the abstraction 
level to model again more complex domains. New methods have 
been developed to support the analysis and design of agent-based 
systems such as KGR [Kinny, Georgeff, & Rao, 1996], Agent-
UML [Odell, Parunak, & Bauer, 2000] or Gaia [Wooldridge, 
Jennings & Kinny, 2000]. 

The Gaia methodology defines 2 models for the analysis of agent 
systems and 3 models for the design. In the analysis phase, one 
has to define a roles model with roles that will later be occupied 
by agents as well as an interactions model that specifies the 
interplay of the roles. In the design-phase, an agent model is 
derived from the roles model defining the agent types and in-
stances of agents. A services model defines the services that are 
provided by the agents. Finally an acquaintance model defines the 
communication links between the agents [Wooldridge, Jennings 
& Kinny, 2000]. 

The living markets development suite (LMDS), the development 
environment used to design our TAC agent team, builds on a 
methodology comparable to Gaia. It supports the design-phase of 
an agent system by allowing an agent scenario to be defined, 
which is roughly a compact representation of the 3 models defined 
in Gaia for the design phase. To illustrate, we describe the 
complete design process of the living agents team for TAC. The 
steps, with explanations hereafter, are: 

1. Defining the agent types 

2. Defining the agents’  interactions 

3. Defining the perceptions, actions and services 

3.1.1 Defining the agent types 
As a first step, the agent types have to be identified, which allow 
the easiest and most natural modeling of the domain. An agent 
type consists of a name, a verbal description, the decision engine 
type, the responsibilities, and permissions of the agent instances. 

The decision engine type specifies how business logic of this 
agent type will be represented and processed. Specifically it 
determines, whether the agent will be proactive or reactive. The 
LMDS currently supports a reactive workflow engine, and a 
proactive extended behavior network engine [Dorer, 1999]. Since 
little proactive behavior was needed all agents used the workflow 
engine. Within the workflow engine, all responsibilities of an 
agent type directly translate into a workflow. The way of defining 
a workflow will be explained in section 3.1.3. Since the TAC 



scenario is a closed and relatively small agent system we did not 
need to implement a permissions model.  

In our example we created 6 agent types (see Fig. 1): 

• TACManager (1): Responsible for starting and stopping the 
other agents when a new round of auctions started. In the 
qualification rounds, auctions continuously took place over 
a time span of 1 week which made it highly desirable that 
the system was completely autonomous during the whole 
time and not only during one round of auctions. 

• TACClient (8): Responsible for the calculation of the best 
combination of tickets for the client it represents.  

• TACDataGrabber (5): Responsible for providing current 
auction information from the auction server. 

• TACAuctioneer (4): Responsible for bidding in the auctions 
according to the suggestion of the TACClients. 

• TACEntertainmentAuctioneer (1): As an extension of the 
simple TACAuctioneer type, this agent type was introduced 
to deal with the specifics of the continuous double auctions. 
Therefore it was responsible for bidding in entertainment 
ticket auctions and regularly observe the current auction 
prices for opportunities to buy or sell tickets. 

• TACResultGrabber (1): Responsible to grab information of 
previous auction rounds and generate statistics to be used in 
later auctions. 

 

 
 

 

3.1.2 Defining the agents’  interactions 
Apart from the agent type definitions an agent scenario also 
contains the interactions between the agent types. As opposed to 
the acquaintance model of Gaia, which only models the interac-
tions itself without specifying any messages, an agent scenario 
directly specifies the messages that are exchanged between the 
agent types. While the agent scenario contains more detailed 
information of the interaction between agent types, the acquaint-
ance model of Gaia will be easier to read in cases where the same 
agent types share multiple messages since it contains only a single 
link between 2 agent types. 

An interaction is defined by a sender agent, a receiver agent and a 
corresponding message name. At the receiver side such an inter-
action directly creates a (yet empty) service the agent is providing. 
An interaction does not define, when these messages are sent. 
This is part of the services description, which is described next.  

3.1.3 Defining the perceptions, actions and services 
As a final step, the services of each agent type have to be defined. 
The definition contains the name of the service, the inputs and 
outputs as well as the content of the service. Pre- and post-
conditions, which are part of the Gaia services model, are only 
specified in the proactive extended behavior network engine.  A 
service is triggered whenever the agent receives a message with 
the name of the service. The type of the service is already defined 
by the decision engine of the agent type, which is in this case a 
workflow engine. To be able to define the workflows of each 
service, or any other decision logic, the perceptions and actions of 
the agent have to be defined first. This is the only step, where 
Java-programming is necessary. 

A perception is a method that receives the agent’s current context 
containing the inputs of the service and returns true (1.0) or false 
(0.0) if the perception is true or false2. A perception is not allowed 
to change the context of the agent. An action is a similar method, 
but is allowed to change the context and environment of the agent. 
Actions and perceptions are organized as beans and can be used 
within any decision engine. The decision at which level of detail 
to draw the cut between low level actions and perceptions and 
high level strategy is up to the designer. 

The definition of a service is illustrated by the ‘start’  service of 
the TACDataGrabber, which is triggered by the TACManager at 
the beginning of a new round of auctions (see Fig. 2). The 
purpose of this service is to notify the TACEntertainmentAuction-
eer (TAE) if any of the auctions it is interested in has reached a 
specified upper limit, in case of selling, or a lower limit, in case of 
buying interest. For the service to be defined, 6 perceptions and 3 
actions have been specified: 

Perceptions: 

• moreAuctionsResponsibleFor: true, if there are auctions 
remaining that the agent is responsible for. 

• auctionEnded: true, if the auction in the context has ended. 

• existingNotifications: true, if further buy or sell requests of 
the TAE are available for this auction. 

                                                                 
2 The extended behavior network engine also supports continuous 

truth values for continuous domains. 

Figure 1. TAC agent scenar io. 

 



• notifyMeOnPriceAboveLimit: true, if the TAE wants to sell 
a ticket. 

• actualPriceAboveLimit: true, if the price limit specified by 
TAE is reached. 

• actualPriceBelowLimit 

Actions: 

• getAuctionPriceFromServer: loads the current information 
of the auction in the context from the TAC server. 

• send: sends a message to another agent. The input parame-
ters of this action are the name of the service, the receiver 
and the content of the message. 

• deleteNotifyEntry: removes the notification request of the 
TAE from the list of requests 

The content of the service is specified by the workflow, which is a 
tree of simple control elements (while, if), perceptions and actions 
(see Fig. 2). 

As with most design methodologies, there is no need to strictly 
adhere to the order of steps described above. In practice the steps 
usually are repeated, e.g. to extend the agent system by a new 
agent type as was done with the TACResultGrabber which was 
only introduced after the qualification rounds. 

The agent scenario is then saved into a separate XML file for each 
agent type. This XML strings can directly be sent to the LARS 
agent platform which will start the specified number of agents for 
each agent type and configure them with the specified decision 
engine and workflows. 

 

 
 

 

 

 

3.2 Strategy 
In this section we describe the overall strategy of our TAC agent 
scenario. It was guided by the following assumptions, which have 
been reinforced during the qualification round and seeding round 
of TAC: 

1. The steadily increasing flight prices favor early deci-
sions for flight tickets. 

2. Especially the good performing teams are following a 
strategy to maximize their own utility. They are not try-
ing to take the risk to reduce other team’s utility, which 
is anyhow difficult in a 16th price auction for the hotels. 

These 2 points, derived from the change in auction rules, lead to a 
completely different strategy than was used last year by the 
highest scoring team ATTac2000. Last year, ATTac tried to delay 
most of the purchases to the very end of an auction round [Stone 
et. al., 2001]. Our strategy did the very opposite and took most of 
its decisions at the very beginning of an auction round. Only 
decisions to buy or sell entertainment tickets have been taken 
during the auction round. This saved considerable amounts of 
money for flight tickets. While this strategy was less effective in 
the qualification rounds, where weaker teams drove hotel prices 
up, and would have been most likely completely unsuccessful in 
last year’s competition, assumption 2 assured a winning success in 
the finals (see Tab. 1). 

 

Hotel Day Seeding 
Round 
(n = 759) 

Final  
(n = 24) 

Significance 
of difference 

1 75 66 0.34 
2 167 120 0.007 
3 174 86 <0.001 

Tampa 
Towers 
(luxury) 

4 81 61 0.02 
1 22 12 0.31 
2 109 77 0.061 
3 104 74 0.031 

Shoreline 
Shanty 
(economy) 

4 28 13 <0.001 

Table 1. Compar ison of the average hotel pr ices in the seeding 
round and in the final round of the competition. 

 

The strategy in more detail: 

1. The TACManager is waiting for an auction round to 
start. When it is started it gets the general auction in-
formation and the client preferences from the server. It 
then sends the ‘start’  message to all other agents, con-
taining this information. 

2. The TACDataGrabbers responsible for inflight and out-
flight auctions request current prices of the flights and 
send them to the TACClient agents. 

3. The 8 TACClient agents are calculating their best jour-
ney based on the preferences of the client they repre-
sent, the current flight prices and the average hotel 
prices from auctions of previous rounds (see below). 
Then they send the information for the desired tickets 
and upper limits to the TACAutioneers and to the TA-
CEntertainmentAuctioneer. 

Figure 2. Workflow defining the ‘star t’  service of the 
TACDataGrabber  and input parameter  descr iption for  

the ‘send’  action used within the workflow. 



4. The flight and hotel TACAuctioneers are bidding for the 
needs of the clients. 

5. The TACEntertainmentAuctioneer informs the TAC-
DataGrabber responsible for entertainment auctions 
about the auctions it wants to sell or buy in. If it is in-
formed about an auction it wants to buy in that is 
cheaper than its desired strike price, it is placing a bid 
just above the price. If an auction it wants to sell in is 
above the desired price, it is placing a bid at the desired 
price. After 7 minutes the TACEntertainmentAuctioneer 
places all the remaining bids for entertainment tickets at 
the desired price. This was not done at the beginning of 
an auction round to exploit cheap starting auctions. The 
desired price we used was the average price for enter-
tainment tickets from previous qualification rounds, 
which was of $80 used for the finals. 

The approximately optimal allocation of tickets in point 3 are 
calculated by calculating the benefits of all permutations of 
possible stays and taking the combination with the highest benefit: 

 
 f or  ( ar r i val Day = f i r st Day t o f or t hDay)  

  f or ( depar t ur eDay = ar r i val Day+1 t o f i f t hDay)  

   f or  ( bot h t ypes of  hot el s)  

    benef i t  = 1000  

     -  i nf l i ght Pr i ce  

     -  out f l i ght Pr i ce 

     -  sum( aver ageHot el Pr i ces)  

     – penal t y  

     + t ampaHot el Bonus  

     + ent er t ai nment Benef i t  

 
In this calculation, the i nf l i ght Pr i ce, out f l i ght Pr i ce, 
penal t y  and t ampaHot el Bonus  are known. The aver -
ageHot el Pr i ce was estimated based on the values from 
earlier qualification rounds. As can be seen from Table 1, the 
average hotel prices differed considerably from the seeding round 
to the finals. Thus a better strategy would have taken previous 
auction prices of the same round into account. Although our 
agents were able to do this from a technical point of view, we did 
not use this optimisation, because we were not sure if it complies 
with the TAC rules. The ent er t ai nment Benef i t  was also 
estimated based on the assumption that we will get all desired 
entertainment tickets at the average price of the previous rounds. 

4. RESULTS 
This section provides results of the TAC competition and infor-
mation about the development process of the living agents team. 
 

4.1 Agent Or iented Software Engineer ing 
It is in general hard to get qualitative or even quantitative mean-
ingful data to support claims that agent oriented software engi-
neering (AOSE) is easier, faster or able to handle more complex 
problems than other software engineering approaches. Neverthe-
less, we decided to give the few quantitative information we have 
for the reader’s own interpretation. 

At the time we decided to participate in TAC, no Java interface to 
the TAC auction server was available. Hence approximately 3 
weeks were necessary to implement the low-level communication 
interface to the server.  

The agent scenario design used for the qualification rounds started 
7 days before the first TAC qualification round on 12th of Sep-
tember. An earlier prototype used for testing the low-level 
interface to the server was completely thrown away. During the 
qualification round, the main efforts were directed to improve the 
robustness of the software with respect to own bugs and reaction 
to server shutdowns to assure smooth participation in overnight 
runs. 

In the remaining 4 weeks to the finals we introduced the TACRe-
sultGrabber to automatically calculate the average hotel and 
entertainment ticket prices of previous auctions. We also intro-
duced the more sophisticated strategy of the TACEntertainmen-
tAuctioneer explained in section 3.2. 

4.2 TAC 
The trading agent competition was held in 4 rounds: a qualifica-
tion round, a seeding round to determine the grouping for the 
semi-finals and a final round conducting more than 1800 rounds 
of auctions with a sum of above 50000 auctions.  

 

Round Teams Rounds Date 
Qualification 28*  992 10.9. – 17.9. 
Seeding 19 775 24.9. – 5.10. 
Semi-final 16 12 14.10.2001 
Final 8 24 14.10.2001 

Table 2. Overview of the TAC schedule. 
* The number is higher than the number of participants since 2 benchmark 
teams (ATTac-2000 and a dummy) also entered the competition and some 
participants entered more than one team.  

 

During the qualification round, the living agents team suffered 
from instabilities on the client and sometimes server side leading 
to series of 0 score games over night. The qualification was 
finished at 11th place with a score of 2639. The seeding round 
showed improvements with living agents at 4th place with 3012 
points, but still had 17 out of 305 games with 0 score. 

The finals were conducted in 24 rounds of auctions with all 8 
finalists potentially bidding in the same auctions.  The average 
scores and the standard deviations of the 8 finalist teams are 
displayed in Table 3. For the finals, the technical problems have 
been solved, avoiding any 0 score games and having a lowest 
score game of 2332 points. 

The results are hardly comparable to last year’s results, since 
regulations have changed from TAC00. The scores indicate, 
however, that the performance of the best 8 teams was much 
closer this year. While last year’s 8th  team scored only 34% of 
ATTac’s points, last year’s winner, this year the 8th  team’s score 
was 78% of the top score. 

To also document the excitement during the finals, Figure 3 gives 
the average scores of the final over time. 



5. CONCLUSIONS AND FUTURE WORK 
During our TAC participation we experienced that the use of an 
agent-oriented software engineering methodology and especially 

the use of tools supporting it eases and speeds up the creation of a 
multi-agent system. We chose the TAC domain as a test domain 
for these tools because of its complex setting of simultaneous 
auctions in an adversarial domain of multiple agent teams. 

Rank Team Avg. Score Std. Dev. Institution 

1 livingagents 3670 622 living systems AG, GER 
2 ATTac 3622 692 AT&T Labs – Research, USA 
3 whitebear 3513 700 Cornell University, USA 
4 Urlaub01 3421 698 Pennsylvania State University, USA 
5 Retsina 3352 668 Carnegie Mellon University, USA 
6 SouthamptonTAC 3254 1467 University of Southampton, UK 
7 CaiserSose 3074 656 University of Essex, UK 
8 TacsMan 2859 1054 Stanford University, USA 

Table 3. Final scores of the eight finalists after  24 rounds of auctions in the TAC finals. 

 

2500

2700

2900

3100

3300

3500

3700

3900

4100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 

Fig 3. Average scores dur ing the final over  time.  

The lines can be mapped to team names with the help of Table 3. 

 

One of the most interesting things we learned from TAC-2001 is 
the interdependence of strategies. A fairly straightforward 
strategy, which is vulnerable to simple strategies of opponent 
agents, can turn out to work excellent among and surpass more 
sophisticated strategies3. The latter themselves have been more 
successful against the simple strategies. 

Knowing this, our research efforts will focus on opponent 
modelling to automatically detect and predict the strategy of 
opponents and adapt our own strategy according to this.  

The agent-oriented software development tools used during our 
TAC participation have been recently developed and are now 
integrated into the production process. They will be used within 
‘ real’  business projects of living systems. 

6. ACKNOWLEDGMENTS 
Thanks to Michael Wellman and his team for providing and 
maintaining the TAC servers and for their immediate and helpful 
responses to our questions. Thanks to Torsten Eymann and Peter 
Stone for valuable feedback to earlier versions of this paper. 

                                                                 
3 We assume here that the strategies of last year’s teams at least 

maintained the degree of sophistication. 

Special thanks to Sudha Raver Veetil and Bhupendra Bhavsar 
for their committed help in the early implementation phase. 

7. REFERENCES 
[1] Dorer, K. Extended Behavior Networks for Continuous 

Domains using Situation-Dependent Motivations. Proceed-
ings of the 16th International Joint Conference of Artificial 
Intelligence (IJCAI), pages 1233-1238, Morgan Kaufmann, 
Cambridge MA, 1999. 

[2] Greenwald, A., and Stone, P. Autonomous Bidding Agents 
in the Trading Agent Competition. IEEE Internet Comput-
ing, pages 52-60, March/April, 2001. 

[3] Jennings, N. R., and Wooldridge, M. Agent-Oriented 
Software Engineering. In: J. Bradshaw (ed.), Handbook of 
Agent Technology, AAAI/MIT Press, 2001. 

[4] Kinny, D., Georgeff, M., and Rao, A. A Methodology and 
Modelling Technique for Systems of BDI Agents. Proceed-
ings of the 7th European Workshop on Modelling Autono-
mous Agents in a Multi-Agent World. Springer: Berlin, 
1996. 

[5] Odell, J., Parunak, H. V. D., and Bauer, B. Extending UML 
for agents. 2nd International Workshop on Agent-Oriented 
Information Systems (AOIS), 2000. 

[6] Stone, P., Littman, L., Singh, S., and Kearns, M. ATTac-
2000: An Adaptive Autonomous Bidding Agent. Proceed-
ings of the 5th International Conference on Autonomous 
Agents, 2001. 

[7] Weiß, G. Agentenorientiertes Software Engineering. 
Informatik Spektrum 24 (2), pages 98-101, 2001. 

[8] Wellman, M. P., Wurman, P. R., O'Malley, K., Bangera, 
R., Lin, S., Reeves, D., and Walsh, W. E. Designing the 
Market Game for a Trading Agent Competition. IEEE 
Internet Computing, pages 43-51, March/April, 2001. 

[9] Wooldridge, M., Jennings, N. R., and Kinny, D. The Gaia 
Methodology for Agent-Oriented Analysis and Design. 
Journal of Autonomous Agents and Multi-Agent Systems 3 
(3), pages 285-312, 2000. 


