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Abstract. In their famous work on prospect theory Kahneman and
Tversky have presented a couple of examples where human decision mak-
ing deviates from rational decision making as defined by decision theory.
This paper describes the use of extended behavior networks to model
human decision making in the sense of prospect theory. We show that
the experimental findings of non-rational decision making described by
Kahneman and Tversky can be reproduced using a slight variation of
extended behavior networks.

1 Introduction

Looking forward to the goal of RoboCup to win against the human world cham-
pion team of soccer in 2050 one could state the question whether the decision
making of the robots should be human like or rational with respect to decision
theory. No matter what the answer to this question is, there should be no doubt
that the robots should be able to model their opponents to understand and pre-
dict their decision making. Since the opponent team will be humans we therefore
have to be able to model human decision making.

In their famous work on prospect theory Kahneman and Tversky [1979] have
shown that human decision making does violate the tenets of decision theory. In
a series of experiments they have shown a couple of deviations to the predictions
of decision theory among those are that humans overestimate low probabilities
and underestimate high probabilities and that subjective utility can differ from
objective utility. Daniel Kahneman was awarded the Nobel prize in economic
sciences in response to this work.

Behavior Networks [Maes, 1989] were introduced as a means to combine reac-
tive and deliberative decision making using a mechanism of activation spreading
to determine the best behavior. With Extended Behavior Networks (EBNs) [Dorer,
1999a] the mechanism of activation spreading was changed so that activation is
a measure of expected utility of a behavior. In this paper we show that the
mechanism of activation spreading in EBNs only needs slight modifications to
reproduce human decision making reported by prospect theory.

Section 2 presents a number of experiments described by Kahneman and
Tversky for their work on prospect theory. Section 3 introduces EBNs and the
mechanism of activation spreading. Section 4 describes how EBNs can be used



to model human decision making and reports on experimental results achieved
applying EBNs to the same experiments conducted by Kahneman and Tversky
with humans. Section 5 concludes the paper indicating possible future work.

2 Prospect Theory

Decision theory is based on the principle of maximum expected utility. If an
agent is faced with a decision between actions (prospects) of uncertain outcome
it should choose the prospect that has the highest expected utility. More formal:
the expected utility of a prospect P (u1, p1; . . . un, pn) is calculated as

euP =
∑
i=1...n

pi × ui (1)

where pi is the probability of outcome ui and
∑
pi = 1. Choosing the prospect

with highest expected utility will maximize the agent’s utility in the long term
and is therefore considered as rational.

On the other side experiments with humans show that human decision mak-
ing deviates from the above. Kahneman and Tversky [1979], for example, de-
scribe a series of experiments that led to the formulation of prospect theory, a
theory of human decision making under risk. In this section we describe a selec-
tion of their experiments that are used in section 4 to be repeated by extended
behavior networks.

2.1 Weighting Function

In their first experiment students had the choice between winning 2500 Israeli
pounds1 with a probability of 0.33, winning 2400 with probability 0.66 and
nothing with probability 0.01 (A) compared to winning 2400 for sure (B). The
expected utility of decision theory for A and B are euA = 0.33× 2500 + 0.66×
2400 + 0.01× 0 = 2409 and euB = 1.0× 2400 = 2400. So a rational agent should
prefer A over B. However, in the experiment 82% (significant*) of the students
chose B, the certain outcome.

Name Prospect Expected Utility Human choices

A (2500,0.33; 2400,0.66; 0,0.01) 2409 18

B (2400, 1.0) 2400 82*

Table 1. Problem 1: One uncertain one certain prospect

1 The average monthly income of a family was 3000 Israeli pounds at that time



The second experiment repeats the first but eliminates a chance of winning
2400 with probability 0.66 from both prospects. Table 2 shows the results of the
experiments. Now with both prospects being uncertain the majority of students
prefer C over D. 62% of the students took combination B and C.

Name Prospect Expected Utility Human choices

C (2500,0.33; 0,0.67) 825 83*

D (2400, 0.34; 0,0.66) 816 17

Table 2. Problem 2: Two uncertain prospects

This and more experiments showed that humans overestimate low proba-
bilities (except the impossible outcome) and underestimate high probabilities
(except the certain outcome). Prospect theory therefore introduces a non-linear
weighting function mapping probabilities to decision weights. Figure 1 shows a
qualitative sketch of the weighting function [Kahnemann and Tversky, 1979].

Fig. 1. A hypothetical weighting function as proposed by Kahneman and Tversky.

2.2 Value Function

In another experiment Tversky and Kahneman [1981] have shown that students
preferred a certain win of 240$ (A) compared to a 25% chance of winning 1000$
(B) despite the fact that expected utility of (A) is less. In the same experiment



a 75% chance for a loss of 1000$ (D) was prefered over a certain loss of 750$ (C)
despite the fact that both have the same expected utility (see table 3). 73% of the
students chose the combination of (A) and (C), 3% chose the combination (B)
and (D). In another experiment students had the choice between a 25% chance of
winning 240$ and a 75% chance of loosing 760$ (E) or a 25% chance of winning
250$ and a 75% chance of loosing 750$ (F). Not surprisingly all students choose
option (F) (see table 4).

Name Prospect Expected Utility Human choices

A (240,1.0) 240 84

B (1000, 0.25; 0,0.75) 250 16

C (-750, 1.0) -750 13

D (-1000,0.75; 0,0.25) -750 87

Table 3. Problem 3: decision under gains and losses

Name Prospect Expected Utility Human choices

E (240,0.25; -760,0.75) -510 0

F (250,0.25; -750,0.75) -500 100

Table 4. Problem 4: intransitive decision with respect to problem 3

This experiment is particularly interesting since the combination (A) and
(C) chosen by most students in the first experiment is equivalent with respect
to decision theory to option (E) of the second experiment while the combination
(B) and (D) is equivalent to option (F). So decision making of the majority was
intransitive.

Prospect theory suggests that gains and losses are not linearly mapped to the
subjective value of human decision makers. The value function is rather “gen-
erally concave for gains and commonly convex for losses and steeper for losses
than for gains” [Kahnemann and Tversky, 1979]. A qualitative value function
with this properties is displayed in figure 2.



Fig. 2. A hypothetical value function as proposed by Kahneman and Tversky.

3 Extended Behavior Networks

Behavior Networks [Maes, 1989] use a mechanism of activation spreading to
decide between a couple of executable behaviors combining reactive and deliber-
ative decision making. Extended Behavior Networks (EBNs) [Dorer, 2004; 1999a]
changed the mechanism of activation spreading so that activation is a measure of
expected utility of a behavior according to decision theory. They have been suc-
cessfully used, for example, as decision mechanism for the magmaFreiburg team
scoring 2nd in RoboCup 1999 simulation league competition [Dorer, 1999b]. In
this section we give a short overview of the relevant activation spreading mech-
anism in EBNs before we describe how this mechanism needs to be changed to
model human decision making according to prospect theory.

3.1 Network Definition

Extended behavior networks consist of goals, resource nodes and so called com-
petence modules that are linked into a network.

Definition 1. A goal consists of a tuple (GCon, ι, RCon) with

– GCon the goal condition (conjunction of propositions, i.e. possibly negated
atoms), the situation in which the goal is satisfied,

– ι ∈ [0..1] the (static) importance of the goal,
– RCon the relevance condition (conjunction and disjunction of propositions),

i.e. the situation-dependent (dynamic) importance of the goal.

Definition 2. A resource node is a tuple (res, g, θRes) with

– res ∈ R the resource represented by the node,
– g ∈ IR+ the amount of bound resource units, i.e. units that are bound by a

currently executing competence module and



– θRes ∈ ]0..θ] the resource specific activation threshold (where θ is the global
activation threshold of the network).

Definition 3. A competence module k consists of a tuple (Pre, b, Post, Res,
a) with

– Pre the precondition and e = τP (Pre, s) the executability of the compe-
tence module in situation s where τP (Pre, s) is the (fuzzy) truth value of the
precondition in situation s;

– b the behavior that is performed once the module is selected for execution;
– Post a set of tuples (Eff, ex), where Eff is an expected effect (a proposition)

and ex = P (Eff |Pre) is the probability of Eff getting true after execution
of behavior b,

– a the activation ∈ IR, representing a notion of the expected utility of the
behavior (see below).

– Res is a set of resources res ∈ R used by behavior b. τU (k, res, s) is the
situation-dependent amount of resource units expected to be used by behavior
b.

Definition 4. An extended behavior network EBN consists of a tuple (G,M,U , Π),
where G is a set of goals, M a set of competence modules, U a set of resource
nodes and Π is a set of parameters that control activation spreading (see below)

– γ ∈ [0..1[ controls the influence of activation of modules,
– δ ∈ [0..1[ controls the influence of inhibition of modules,
– β ∈ [0..1[ the inertia of activation across activation cycles,
– θ ∈ [0..â] the activation threshold that a module has to exceed to be selected

for execution, with â the upper bound for a module’s activation,
– ∆θ ∈]0..θ] the threshold decay.

3.2 Activation Spreading

The decision of which behavior to adopt should be based on the the expected
utility of executing such behavior. In EBNs, the expected utility of a behavior
is approximated by a mechanism called activation spreading. The competence
modules are connected to the goals and other competence modules of the net-
work. Across those links activation is spread from the goals to the competence
modules and among competence modules.

A competence module receives activation directly from a goal if the module
has an effect that is equal to a proposition of the goal condition of that goal.

at ′kgi
= γ · u(ιgi , r

t
gi

) · νγ(pj) · exj , (2)

u(ιgi
, rtgi

) is the utility function mapping importance ιgi
and relevance rtgi

to a
utility value. In section 4 we will show how this utility function has to be changed
to reproduce human decision making described in section 2.2. νγ determines how
activation is distributed to multiple propositions of the goal condition. exj is



the probability of the corresponding effect to come true. In section 4 we will
introduce a weighting function for this probability corresponding to section 2.1.
The amount of activation depends on the probability of an effect to come true
and the utility of the proposition in the goal condition as described in equation 1.

A competence module is inhibited by a goal if it has an effect proposition that
is equal to a proposition of the goal condition and one of the two propositions is
negated. Inhibition represents negative expected utility and is used to avoid the
execution of behaviors that would lead to undesired effects.

at ′′kgi
= −δ · u(ιgi

, rtgi
) · νδ(pj) · exj , (3)

A competence module x is linked to another competence module y if x has an
effect that is equal to a proposition of the precondition of y. y is called a successor
module of x. Module x gets activation from the successor the amount of which
depends on the utility of the precondition and the probability of the effect to
come true. The utility of propositions that are not part of a goal condition is
not available directly. It can be determined indirectly using the activation of the
containing module and the truth value of the proposition. In this way, unsatisfied
preconditions get implicit sub-goals of the network. Their utility directly depends
on the utility of the competence module itself.

Finally a competence module x is linked to another competence module y if
it has an effect that is equal to a proposition of the precondition of y and one
of the two propositions is negated. y is called a conflictor of x, because it has
an effect that destroys an already satisfied precondition of x. Again, a conflictor
link from x to y is inhibiting (negative activation) to avoid undesired effects.

The activation of a module k at time t is then the sum of all incoming
activation and the previous activation of the module decayed by β (defined in
the set of parameters Π):

atk = βat−1
k +

∑
i

atkgi
, (4)

where atkgi
is the maximal activation module k receives at time t from goal gi

to which the module is linked directly or indirectly across incoming successor
and conflictor links of other competence modules. For more details on activation
spreading see [Dorer, 1999a].

Behavior selection is done locally in each competence module in a cycle con-
taining the following steps. The details of behavior selection are not relevant in
this context.

1. Calculate the activation a of the module.
2. Calculate the executability e of the module.
3. Calculate the execution-value h(a, e) as the product of both.
4. Choose those competence modules for execution that have an execution-

value above that of each resource node linked to. For each resource there
have to be enough units available.

5. Reduce θ of each resource node not used ∆θ and go to 1.



4 EBNs and Prospect Theory

In this section we show how the calculation of activation in EBNs has to be
changed to correspond to findings reported in section 2. Experiments with both
versions of EBNs reproduce the discrepancy between decision theoretic and hu-
man decision making reported in that section.

4.1 Theory

As described in section 2, prospect theory introduces non-linear value and weight-
ing functions to explain results of experiments on human decision making.

The very same can be done for EBNs. The already existing value function
u (see equation 2, 3) needs to be changed according to prospect theory. The
utility function was chosen to correspond to the measure of risk taking defined
by Arrow and Pratt [Eisenführ and Weber, 1999]:

r(x) =
u′′(x)
u′(x)

(5)

Using US-American tax data, Friend and Blume [1975] showed that investors
exhibited decreasing absolute and constant relative risk taking behavior x · r(x).
A utility function

u(x) =
{

x2ρ : x ≥ 0
−x2ρ : x < 0 (6)

corresponds to this observation if x is a normed value and ρ ∈]0..1] is used as
risk parameter. Using ρ = 1

2 the utility function is linear and corresponds to
decision theory exhibiting risk neutral behavior. ρ < 1

2 corresponds to a risk-
aversive behavior in case of gains (x ≥ 0) and risk-taking behavior in case of
losses (x < 0) as was observed in section 2. For ρ > 1

2 it is vice versa.
A weighting function was not envisaged in original EBNs, but can easily be

introduced. In equations 2 and 3 the probability exj is replaced with π(exj)
where the weighting function π(x) is defined as follows:

π(x) =

 0 : x = 0
1 : x = 1

ex−1 − 1
4 : 0 < x < 1

(7)

This weighting function shows the properties described in section 2.1. For the
impossible (x = 0) and certain (x = 1) outcome weighting function and proba-
bility match (π(x) = x). Low probabilities are overestimated (π(x) > x) while
high probabilities are underestimated (π(x) < x).

The simplicity with which EBNs can be adjusted to model human decision
making and prospect theory is also underlined by the amount of code changes
necessary for implementation. Changing the existing value function required
adding 4 lines of code. Adding the weighting function required changes in 4 lines
of code (the calculation of activation for each type of connection) and adding
another 6 lines of code.



4.2 Experiments

The changes above have been applied to the problems described in section 2.
In the following figures, the upper level nodes of the networks are the goals
with corresponding value. The lower level nodes are the competence modules
representing the alternatives to choose from. The set of connections from a com-
petence module represent the prospects with corresponding probabilities. The
parameters for all the networks were chosen in order to have activation values
matching expected utility of decision theory. As values we used γ = 1.0, δ = 1.02

and β = 0.0. In the prospect theoretic cases we used as risk parameter ρ = 0.4.
Figure 3 shows the results of running an original EBN with decision theoretic

activation calculation on problem 1 and problem 2. The activation of the modules
correspond to the expected utility of decision theory. The network prefers a over
b and c over d accordingly.

Fig. 3. Decision Theoretic EBN for problem 1 (left) and problem 2 (right) of section 2.

Figure 4 shows the results of running an EBN with new value and weighting
function on the same problems. Now the network prefers b over a and c over d
as the majority of students did.

In the same way, decision theoretic EBNs and EBNs according to prospect
theory have been applied to problems 3 and 4. Figure 5 shows the results of
an EBN with decision theoretic activation calculation. Again the activation of
the modules correspond to the expected utility of decision theory. The network
prefers b over a, is indifferent with respect to c and d and prefers f over e.

Figure 6 shows the results of an EBN according to prospect theory on the
same problems. Here the network prefers a over b and d over c as the majority
of students did. Also it prefers f over e showing the same intransitive decision
taken by a significant amount of students.
2 A value of 1.0 for γ and δ is outside the definition area that guarantees convergence

of activation. In our case this is no problem since no activation spreading between
competence modules is done



Fig. 4. EBN for problem 1 (left) and problem 2 (right) of section 2.

Fig. 5. EBN for problem 3 and problem 4 using decision theoretic activation spreading.

Fig. 6. EBN for problem 3 and 4 using activation spreading based on prospect theory.



5 Discussion and Future Work

In this paper we showed that EBNs can be used to reproduce human decision
making deviating from rational decision making with respect to decision theory.
However, the experiments of Kahneman and Tversky required only relatively
small EBNs and no activation spreading between competence modules. Future
work should investigate if the results can be used for bigger EBNs using acti-
vation spreading. The RoboCup domain is particularly interesting since EBNs
have already been successfully applied to it.

The next steps should then be:

1. Play a number of soccer games against agents of an opponent team using
EBNs based on prospect theory for decision making. This is already possible
and first results indicate that such a team shows different behavior. Investi-
gate if and how the first team of agents can improve their performance by
modeling their opponents using EBNs based on prospect theory compared
to a team of agents using EBNs for opponent modeling based on decision
theory.

2. Replace the opponent team by a real soccer team and see if it shows improved
performance when switching between EBNs using decision theory or prospect
theory. If step 1 is successful then the results of this paper indicate that also
this step should be.
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