
Agent-based Dynamic Transport Optimization

Klaus Dorer and Monique Calisti
Whitestein Technologies AG

Gotthardstrasse 50
8002 Z̈urich, Switzerland
Phone: +41 1 205 5500
Fax: + 41 1 205 5509

{kdo,mca}@whitestein.com

Abstract

In this paper we present our agent-based approach con-
ceived to solve dynamic multi-vehicle pickup and delivery
problems with soft time windows. While many of the exist-
ing research frameworks have been focusing on reaching
close-to-optimal solutions, the central theme of our work is
the ability to solve real world sized problems in near real
time. In order to describe our solving approach and its per-
formance, we introduce a real case scenario in which a lo-
gistics company has to dynamically optimize a set of trans-
portation requests. The aim is to show how our agent-based
solution produces significantly better results than achieved
with manual optimization of professional dispatchers.

1. Introduction

Today, most of the big logistics companies are fac-
ing the crucial problem of managing continuously growing
amounts of transportation requests/orders and vehicles un-
der increasingly tight time constraints. The main reason is
that the transportation market itself has been significantly
expanding over the last years and a number of factors deter-
mined the merge of various transportation businesses of two
or more logistics companies (e.g. Deutsche Post, AEI and
Danzas, UPS and Fritz, Kuehne & Nagel and USCO, Exel
and Mark VII). The problem is usually solved by distribut-
ing the transportation business across a number of regional
dispatching centers and increasing the number of dispatch-
ers. This process, however, is complicated by the fact that
a considerable amount of communication and remote coor-
dination is necessary to detect opportunities of combining
transportation between regional dispatching centers. In par-
ticular, delays and coordination costs can heavily impact the
ability of optimizing resource consumption (i.e., deployed
vehicles, number of dispatching centers) and finally fulfil

all orders as expected. Today, for instance, the average uti-
lization of vehicles in charter business is fairly low (55%
in the example described in section 4). In this sense, we ar-
gue and show that intelligent transport optimization systems
have the great potential of reducing overall transport costs
by improving the coordination process of distributed dis-
patchers and the resource consumption (i.e., better usage of
available resources than allocation of additional ones).

The problem of organizing the pickup and delivery of
transport requests in a timely fashion by deploying multi-
ple vehicles is known in the operations research literature
(and in the following) as dynamic m-PDPSTW. We give a
short introduction to the dynamic m-PDPSTW problem in
section 2. Good and more extensive overviews of the prob-
lem can also be found in [14, 11, 4, 1].

Several agent-based approaches have been proposed to
deal with this kind of dynamic optimization problems, e.g.,
[3, 9]. The main motivation comes from the fact that multi-
agent systems ideally reflect the distributed nature of the
problem and are able to deal with the dynamics of plan-
ning and execution in near real-time settings. The work de-
scribed in this paper introduces an agent-based optimization
system that focuses on and deals with real world transporta-
tion problems. Real world transportation problems usually
differ from ‘standard’ problem instances in the number of
constraints to be obeyed [16] and the instance size. In sec-
tion 2.2, we describe the constraints that need to be taken
into account in order to obtain delivery routes that are
drivable in real world. Section 3 describes the optimiza-
tion algorithms and agent-based design that enables to deal
with problem instances with thousands of transportation re-
quests. As of today, we are aware of only few research
works that deal with such large sized problem instances,
e.g., [7, 6, 5]).

The remainder of the paper is organized as follows: Sec-
tion 2 covers the problem formulation, the specific con-
straints and the cost model used for the empirical evalua-

tions. In section 3, our agent-based optimization approach
is explained. Section 4 gives some empirical results of a real
world optimization problem. Finally, in section 5 we discuss
possible future work directions before concluding.

2. Dynamic m-PDPSTW

The dynamic multi-vehicle pickup and delivery problem
with soft time windows (dynamic m-PDPSTW) [13, 14]
consists of finding optimal routes for serving transportation
requests of customers. The problem is calleddynamic, as
opposed to its static version, if the transportation requests
are not all known in advance. In this case, new requests are
acquired consecutively during the optimization process it-
self. An even more dynamic version also deals with changes
that can occur to transportation requests and/or transporta-
tion capacity in a real-time fashion. These changes reflect
reactions to information the driver gets when picking up
specific orders or by unplanned situations like traffic jams.
The problem is ‘single-vehicle’ if all transportation requests
are served by a unique vehicle. Here, we deal with a ’multi-
vehicle’ problem where multiple vehicles can be used for
the delivery. The vehicles may be of different type and have
different capacities. As opposed to vehicle routing prob-
lems [10, 14], inpickup and delivery problems(PDP), ve-
hicles do not necessarily start or end in the same location.
Transportation requests may have the same but have usu-
ally different pickup and delivery locations. The pickup and
delivery of orders has to occur within a specific time win-
dow, even though time constraints can be possibly violated
up to some tolerated degree. These kind of problems are
called PDP with soft time windows.

Thesolutionof an m-PDPSTW consists of a set of routes
including a schedule that specifies the times at which the
vehicles have to be at selected locations. The result is also
calleddelivery planand its quality or goodness is given by
anobjective function, which in our case is a cost-based func-
tion (see section 2.3 for more details). In our framework,
the termnodeis used to indicate the combination of loca-
tion and schedule, i.e. arrival and departure time of the ve-
hicle at the location. Aleg is the way between two nodes.
A tour is a sequence of nodes a vehicle visits. The vehi-
cle is empty at the beginning and at the end of a tour, but
not while the tour has not been completed. Tours are some-
times also called active periods or mini-clusters in literature
[11]. A route is a sequence ofn ≥ 1 tours done by a ve-
hicle. The termsorder andtransportation requestare used
synonymously for a customer request to transport a good
from a pickup location (within a specified pickup time win-
dow) to a delivery location (within a specified delivery time
window).

2.1. Initial Information

As mentioned above, for dynamic settings the transport
requests are not all available when starting the route plan-
ning and delivery scheduling process, but can arrive con-
secutively. Some transport requests may have already been
served, while new requests arrive. Every transport request
specifies:

• Order type.

• Volume (in loading meters).

• Weight.

• Pickup location.

• Pickup time window.

• Delivery location.

• Delivery time window.

• Time at which the order is known to the system.

Additional information is also available for each vehicle:

• Vehicle type.

• Capacity (volume, in loading meters).

• Capacity (weight).

• Start location.

• Availability time (at start location).

• Tariff.

The tariff indicates a cost class to which the vehicle belongs
(see section 2.3). A mapping function defines which order
types fit to which vehicle type.

2.2. Constraints

The optimization algorithm has to obey a number of
constraints during the calculation of routes. Constraints are
classified ashard constraintsandsoft constraints. Hard con-
straints express conditions that must be verified. Soft con-
straints express conditions that might be violated to some
degree. The former category includes:

• Load constraints:

– Precedence (pickup has to be before delivery);

– Pairing (pickup and delivery have to be done by
the same vehicle);

– Capacity limitation of a vehicle;

– Weight limitation of a vehicle;

– Order type and vehicle type compatibility.

• Time constraints:

– Earliest pickup - maximal allowed early time;

– Latest pickup + maximal allowed delay;

– Earliest delivery - maximal allowed early time;

– Latest delivery + maximal allowed delay;

– Maximum time a vehicle may wait at a location
for new transport requests;

– Maximum duration of a tour;

– Maximum duration of a route;

– Lead time for ordering a vehicle;

– Maximum driving time of a driver.

• Maximum number of locations on a tour.

Soft constraints violations produce violation costs that im-
pact the optimization process, but that are not included in
the final overall solution costs. Violation costs are intro-
duced so that constraints are only violated if it is ’worth-
while’, i.e. only if the cost savings achieved by violating
a soft constraint exceed the violation costs the constraint
violation is allowed. A soft constraint is defined in terms
of a start value above (below) which the condition is soft-
violated, an end value above (below) which the constraint
has a hard violation, fix violation costs assigned if the con-
straint is (soft) violated and variable violation costs that
grow proportional to the amount of soft violation. The fix
violation costs can be used to control the number of viola-
tions. The variable violation costs ensure that the amount of
constraint violation is kept low (see section 2.3). The fol-
lowing soft constraints have been considered in the evalu-
ated domain:

• Earliest pickup time;

• Latest pickup time;

• Earliest delivery time;

• Latest delivery time.

2.3. Cost Model

The major concern of logistics companies is to reduce
their costs [2]. Consequently, the objective function used
to evaluate the result of optimization is cost-based. The cost
model here was chosen on the basis of real data to be able to
compare the results of agent-based m-PDPSTW optimiza-
tion with the real transport plan created manually by pro-
fessional dispatchers. The cost model distinguishes between
three kinds of costs: variable, fix and violation costs.

Variable costs are assigned depending on the length of
a route, the amount of transported load and the start loca-
tion of the specified route. The variable cost of a route is
calculated as:

cvar =
∑

tours

ckm ∗ dcroute (1)

with ckm the distance cost computed as:

ckm = dtour ∗ lmax ∗ tariff(region, dtour, lmax). (2)

wheredtour is the driven distance of the tour,lmax is the
maximal load (volume) that is transported on a leg of the
tour, tariff is the cost class which the tour belongs to. In
the real case we analyzed, 7 tariff regions within Germany,
3 distance classes for each region and 16 load classes for
each region and distance class have been defined. The val-
ues fortariff used during evaluation where derived from
historic data.dcroute is a discount that is granted to spe-
cial routes. A discount is granted if a route contains multi-
ple tours (tramp tours). This reflects the issue that in char-
ter business cheaper offers are given when multiple con-
secutive tours can be offered to a subcontractor. The empty
driven kilometers between two tours have to be limited (e.g.,
70 km), and the period of time between the end and start of
two tours is limited (e.g., 4 h). A higher discount is granted
if a route with multiple tours ends close to (< 100 km) the
start location (back tours). This saves work of the subcon-
tractor in looking for freight (and driver) for a back tour of
the vehicle.

Fix costs may be assigned to a vehicle on a daily ba-
sis. This means that each day a vehicle is used fix costs are
assigned. In the analyzed case, fix costs were replaced by
minimum costs. If the vehicle’s variable costs are below a
minimum threshold, the final costs of the route are the min-
imum costs independent of the duration of the usage. The
total cost of a route is then calculated as:

c = max(cmin, cvar) (3)

wherecmin is the configured minimum costs of a vehicle.
Violation costs are not included in the total cost of a

route, but are used by the optimizer during the solving pro-
cess. They arise when soft constraints are violated, as men-
tioned above. Each soft constraint violation causes a fix vi-
olation cost independent of the amount of violation. This
way the user can influence the number of constraint viola-
tions. If, for example, the fix violation cost is configured to
be 100 cu1, the cost savings the optimizer achieves by al-
lowing a soft constraint violation has to be above 100 cu.
Violating a constraint for less cost savings is not possible.
A soft constraint violation also causes a variable violation
cost increasing with the amount of violation. If, for exam-
ple, the variable violation cost is set to 50 cu/h then the cost
savings for a 3 hour delay has to be at least 150 cu. This
way the average amount of violation can be controlled.

3. Agent-Based Optimization

The optimization process is incrementally reflecting the
dynamics of the underlying m-PDPSTW settings. When-
ever a new transport request is available to the system, the

1 cu stands for currency unit

For all vehicles
Check availability
For all pickup insertion points

For all delivery insertion points
Check constraints and schedule
Calculate quote
If cheapest quote -> store quote

Assign order to cheapest quote

Figure 1. Order insertion algorithm.

current delivery plan is updated. This is done in a two-
phase-based approach. First, a new valid solution is gen-
erated including the new transportation request. Then, the
obtained solution is improved by cyclic transfers of trans-
portation requests. The next two sections explain these two
steps and section 3.3 describes how these algorithms can be
shared across multiple agents.

3.1. Solution Generation

The first step when receiving a new order is the gener-
ation of a new valid solution. The algorithm used for this
is a sequential insertion of transportation requests [7]. For
all available vehicles it is checked if they are able to trans-
port the order and what additional costs arise. One of the
available vehicles is a new empty charter vehicle assumed to
be available at the pickup location. The process of sequen-
tial insertion is summarized in Figure 1. Each time a trans-
portation request is added to a route either 0, 1 or 2 new
nodes have to be added depending on whether the pickup
and/or the delivery nodes of the request are already part of
the route or not. In this way, multiple pickups and deliver-
ies per location are possible. Based on the insertion algo-
rithm, it is also possible that a vehicle visits the same lo-
cation several times. Finally, for all combinations of exist-
ing nodes a quote is generated for inserting a new pickup
and delivery node.

Each time a new node is added to a route the order
of nodes could be optimized. This corresponds to solving
a traveling salesman problem (TSP) and is intractable in
the general case [8]. In our approach, we do not solve the
general TSP. Instead, the order of existing nodes is never
changed and for every new node all points between existing
nodes are checked for insertion of the new node. In an em-
pirical evaluation with a case of 200 orders the comparison
of an optimal algorithm for solving the TSP and our approx-
imation algorithm has shown that only in 2 cases our algo-
rithm produced sub-optimal routes with just 17 additional
kilometers (< 0.2 0/00 of the complete distance traveled).
Focusing on real world sized problems this gap from the op-
timum is considered to be acceptable compared to the gain

Figure 2. Example for a suboptimal solution
of the insertion algorithm for 4 orders.

in runtime performance (n!
2n possible solutions for the trav-

eling salesman problem compared ton(n+1)
2 possible solu-

tions for the simplified insertion of an order with n the num-
ber of locations).

If no vehicle can transport the order, which means all ve-
hicles would have to break hard constraints, the orders ser-
vice level is lowered. This means the order may be trans-
ported with configurable soft constraint violations allowing
violations of pickup and delivery times. If still no vehicle
is found the order remains unallocated. This is usually the
case if order data is invalid in a sense that the problem is
over-constrained (e.g. impossible driving times, volume or
weight above limits of vehicles).

3.2. Optimization

Sequential insertion with requests for quotes to all vehi-
cles potentially produces suboptimal solutions, see the ex-
ample in Figure 2. Order 1 is the first arriving at the system
and it is assigned to vehicle A’s route. Order 2 is again op-
timally assigned to vehicle A’s route since it produces least
additional costs (and kilometers). When order 3 arrives ve-
hicle A is fully loaded. Therefore, a new vehicle B is used
for order 3 and later order 4.

To get closer to the optimal solution a further optimiza-
tion step is performed. It is done by cyclic transfers between
vehicles [15]. A cyclic transfer is an exchange of orders be-
tween routes. More specifically in ab−cyclic k−transfer
k orders are cyclically exchanged betweenb routes [11]. In
our casek defines the maximum number of orders trans-
ferred. A 3-cyclic 3-transfer might then be moving 3 orders
from first to second route, 1 order from second to third and 2
orders from third to first route. Figure 3 shows how the sub-
optimal example of Figure 2 is improved by a 2-cyclic 1-
transfer. Order 2 is transferred from route A to B while order
4 is transferred from route B to A. The optimization proce-
dure has to determine whichb-cyclic k-transfers should be

Figure 3. Optimal solution after a 2-cyclic 1-
transfer.

tried. Adding a new transport request changes a single vehi-
cle’s router1 (orders with a volume above a vehicle’s capac-
ity are assumed to be split before reaching the optimizer).
Assuming that at a time t before the order insertion an op-
timal solution is found the only point for improving trans-
fers isr1. Therefore,r1 is initiating transfer requests to all
other vehicles. The number ofk-transfer requests between
two routes is determined by the number of groupsg of or-
ders of a router with at most sizek |gr,k|. All combinations
of pairs of groups between the two routes produce a transfer
request. The number of requests therefore grows consider-
ably and limits the applicability of the algorithm to domains
with few loads (< 10) per vehicle or to smallk values. From
the so created transfer neighborhood the most cost-savingb-
cyclic k-transfer is performed, i.e. the transfer that reduces
the overall costs most. This changes router1 and b other
routesri. This hill climbing process is continued with all
changed routes until no more cost-saving exchanges can be
done. In our case, only 2-cyclic transfers where performed
for performance reasons (see section 4.3). The workflow of
a 2-cyclek-transfer hill climbing algorithm is described in
Figure 4.

3.3. Agent Design

Solving a dynamic m-PDPSTW can be distributed across
multiple agents. This is desirable mostly to achieve scalabil-
ity of performance with growing sizes of problem instances.
Several agent designs are possible to distribute the work.

The most radical one is to represent each vehicle by an
agent [3, 9]. Solution generation by sequential insertion is
then handled by a contract-net interaction protocol [3]. The
optimization algorithm could be changed to not look for the
best of all possible transfers, but trigger a transfer between
two vehicles whenever it improves the objective function.
This reflects the issue that multiple vehicle’s routes might
change concurrently. Therefore, deciding for a transfer only

Store changed route r1 in list l
For all other routes ri

Check compatibility of vehicles
For all g r1,k

For all g ri,k
Perform exchange
Check r1 constraints and schedule
Check ri constraints and schedule
Calculate cost savings
If highest cost savings

Store option
If option found

Perform best exchange
Add changed routes to l

Else
Remove r1 from l

Repeat until l is empty

Figure 4. 2-cycle k-transfer algorithm

after having asked all other vehicles has a higher probability
that this transfer is then no longer possible. In this changed
optimization algorithm the hill-climbing is no longer along
the steepest slope and possibly more transfers are necessary
to get to the same solution. Also, the optimization may end
in a different local optimum. The mechanism of initiating
transfer requests remains the same except that no list is nec-
essary to store the changed vehicles (routes) for sequential
optimization. Instead vehicle agents with a changed route
start an optimization process in parallel to the other active
vehicle agents.

The advantage of this fully distributed approach is its
fine granularity and high scalability. The main disadvantage
stems from a considerable overhead in computation time
and resource usage. The overhead in computation time is
mostly due to more expensive agent communications com-
pared to simple java method calls in a centralized solution.
The overhead in resource usage depends on the footprint of
an agent in the used agent system.

The agent design chosen for our work reflects the way
logistics companies today manage the complexity of this
domain. Transportation business is usually divided into re-
gions/clusters. Transportation requests arriving at a cluster
are first tentatively allocated and possibly optimized within
that cluster. If the order’s pickup or delivery location is in
a different cluster, the other cluster is also informed and
asked to handle the request if it can do it in a cheaper
way. In our framework, distinct agents represent different
regional clusters. All vehicles starting in the region of an
agent are managed by itsAgentClusterManager . In-
coming transport requests are distributed by a centralized
AgentDistributor according to their pickup location

Figure 5. Cluster-based agent design.

(see Figure 5). Sequential order insertion can be done as
described in section 3.1. The only difference is that ’all ve-
hicles’ in this case restricts to all vehicles of a cluster. A
sensible extension is to forward a transportation request to
another cluster in case it may not be transported within
its cluster. The quality of the solution is expected to de-
crease with the number of defined clusters since order in-
sertion does not take vehicles of other clusters into account.
This has to be ’repaired’ by optimization transfers. The opti-
mization algorithm within a cluster is the same as described
in section 3.2. Additionally, vehicles with routes spanning
over other clusters may also initiate transfer requests among
clusters. This can be achieved by adding a vehicle temporar-
ily to the list of vehicles in another cluster and remove it
from the original cluster. Then it will be part of the normal
optimization process and can be moved back afterwards.

The main advantage of this design is its direct correspon-
dence to today’s business and its good scalability. Its com-
putational overhead is also much lower than with the first
mentioned approach. The disadvantage compared to a cen-
tralized and the above solution is that optimization within a
cluster and among clusters has to be handled slightly differ-
ently. The solution quality could turn out to be worse com-
pared to a fully centralized approach since information is
not globally available.

4. Empirical Results

The empirical tests were run for a European logistics
company with the aim of evaluating the potential cost sav-
ings of the introduction of a transport optimization system.
The dataset contains roughly 3500 real-business transporta-
tion requests. The constraints and cost model have been
used as described in section 2. Parameterization was set up
so that the resulting routes where accepted by the dispatch-
ers as realistic.

Savings (agent-based)

cost 11.7%

kilometer 4.2%

vehicles 25.5%

Table 1. Savings achieved by agent-based
compared to manual dispatching.

The primary goal of the logistics company has been to
reduce their costs. Secondary or sub-goals have been to re-
duce the number of used vehicles and the amount of driven
kilometers, and increase the utilization of the vehicles.

The agent server used for the evaluations is the Liv-
ing Agents Runtime System (LARS) of the Living Systems
GmbH. Tests were run on a 2 GHz Pentium machine run-
ning on Linux. For the results presented in section 4.5, four
800 MHz Pentium PCs running also Linux were used.

4.1. Comparison to Manual Dispatching

A number of measures have been taken to make the re-
sults of agent-based optimization comparable with the re-
sults achieved by the professional dispatchers. We used the
same underlying geo-coding information system (distance
and drive time information) as was used by the dispatchers.
The average cost values for tariff classes (see section 2.3)
have been obtained by the real costs that incurred in the cor-
responding tariff classes. Soft time windows and therefore
soft constraint violations were only allowed if order data did
not allow an in-time pickup or delivery. The resulting deliv-
ery plan was checked by dispatchers for feasibility and driv-
ability.

Table 1 shows the comparison of the results. A total of
11.7% cost savings was achieved, where 4.2% of the cost
savings stem from an equal reduction in driven kilometers.
Another 2.2% is achieved by increasing the number of cost-
saving tramp traffics (see section 2.3) by 380%. The rest
stems from buying cheaper vehicles. The cost-based opti-
mization prefers routes that start in cheap regions. An ad-
ditional important achievement, is that the number of vehi-
cles used is 25.5% lower compared to the manual solution.
This is due to a higher utilization of the vehicles and an on
average longer usage of a single vehicle. In this sense, the
cost savings would even be higher if fix costs for the vehi-
cles would arise, which is not the case in charter business,
but possibly in other transportation settings.

Figure 6. Influence of transfer parameter k on
result quality and runtime.

4.2. k-transfers

The evaluated logistics business was a so calledpart load
business. This means that multiple orders are usually loaded
on a vehicle. Therefore the optimization result should im-
prove with a growing numberk of orders involved in a sin-
gle transfer. Figure 6 shows the optimization results for the
above described example when growingk. k = 0 means
that no transfers are allowed. The corresponding result is
therefore the result of the sequential insertion algorithm de-
scribed in section 3.1. Fork = 1 a single order may be
moved from one vehicle to another or two vehicles may ex-
change a single order. The achieved cost savings overk = 0
is 6.7%. Another 0.3% savings are achieved withk = 2
and 0.1% withk = 4. For k = 3 the result is minimally
(< 1 0/00) worse compared tok = 2. This happens since all
results are potentially local optima.

The runtime for optimization of the orders grows as ex-
pected with increasingk. The almost linear growth of run-
time can be explained by the average number of orders per
vehicle ¯|o| = 1.7. This means that the number of candidate
vehicles with 2 or more orders is getting increasingly small
with growingk. The absolute runtime of 13:29 minutes for
this data emphasizes the near real time property of our op-
timization approach. In particular real time events like or-
der data change or delays of vehicles are usually inserted
and optimized within one second.

4.3. b-cycles

The above results were obtained by using 2-cyclic trans-
fers of orders. There are situations where no exchange

between two vehicles may produce cost savings, but ex-
changes between three or more vehicles will. To estimate
the gap in solution quality of 2-cyclic transfers to 3-cyclic
transfers we generated a set of 10 million random transport
situations with 3 vehicles containing one order each. Each
situation was first optimized doing all possible 2-cyclic ex-
changes with cost savings. The solution was then compared
with both possible 3-cyclic exchanges.

An additional optimization was just possible in 0.04% of
the total cases saving only 0.02% costs. The gap should be
even smaller forb > 3, although we did not test it. The in-
crease in runtime for checking b-cyclic exchanges would on
the other side be considerable. The additional gain is there-
fore not considered to be achievable in near real time.

4.4. Soft Time Windows

Some logistics companies today offer different service
levels for the delivery of transport requests. They offer the
customer the choice of a more expensive 100% in-time
pickup and delivery or different cheaper levels with pos-
sible delays. This can be modeled using soft time windows.

To estimate the impact of soft time windows a series of
optimization runs with increasing allowed delay for pickup
and delivery of orders have been performed. Time violations
were discouraged by 100 cu fix and 50 cu/hour variable vi-
olation costs. So only opportunities for cost-saving delays
with a relatively high real cost saving are taken. An exam-
ple for such an opportunity is that an order may be loaded
on an existing vehicle that already drives from the order’s
pickup to delivery location, but is some minutes late for de-
livery instead of driving it in an almost empty separate ve-
hicle in time.

Figure 7 shows the results. As expected, the less strict
constraints have to be obeyed the lower are the overall costs
for transportation. On the other side, the number of con-
straint violations grows. Logistics companies can use this
kind of simulation to estimate the possible cost savings and
set up their cost structure accordingly.

4.5. Distributed Optimization

As described in section 3.3 the solution generation and
optimization can be distributed across multiple agents and
therefore also across multiple agent platforms. The above
mentioned results where gained using a single optimization
agent. In our current work, we are increasing the number of
optimization agents and agent servers involved. Initial re-
sults are available running the optimization on 4 agents and
4 servers. The corresponding clusters were disjunct and no
inter-cluster optimization was available in these initial runs.
Also a smaller dataset with 1200 orders was used.

Figure 7. Influence of soft time windows to
the optimization result and the number of
constraints broken.

Optimization was 9 times faster than using a single
agent. Roughly a factor three is achieved by the distribu-
tion on 4 servers, another factor three is due to the regional
clustering itself. The loss in quality was 1.2%. This should
be improved once transfers between clusters is available.

5. Future Work and Conclusion

In this paper we presented an agent-based approach to
solve a real-world dynamic pickup and delivery problem
with soft time windows. The constraints and parameteriza-
tion have been chosen to get a realistic delivery plan that can
be executed in daily business. The presented solution pro-
duced significantly better results compared to the results of
professional dispatchers.

These results are currently achieved by a simple hill
climbing optimization. Since in a productive environment
the optimization is a constant process running the whole day
there is usually computation time available during less busy
hours of the day. Those less busy times could be used by
more sophisticated optimization algorithms like tabu search
to further explore the solution space [12].

Our current work focuses on the distribution of the opti-
mization across multiple agents. The distributed optimiza-
tion has been validated and already deployed for first ex-
perimental results. However, a number of improvements
are still ongoing and mainly concern enabling transfers be-
tween clusters and simplifying the process of configuring
distributed agent servers. Finally, we aim to also implement
the fully distributed version (as mentioned in section 3.3)
to estimate the possible performance and measure the real
overhead in runtime and memory usage.

References

[1] T. G. Crainic. Long haul freight transportation. In R. W.
Hall, editor,Handbook of Transportation Science. 2nd Edi-
tion, Kluwer, 2002.

[2] Exel. Cost reduction still the biggest pressure on logistics for
the industrial sector. Inhttp://www.exel.com/mediacentre/-
newsreleases/releases.asp?intarticleID=710, London, UK,
2004.

[3] K. ”Fischer, J. P. M̈uller, and M. Pischel. Cooperative trans-
portation scheduling: an application domain for DAI.”Jour-
nal of Applied Artificial Intelligence”, 10, 1995.

[4] M. Gendreau and J. Potvin. Dynamic vehicle routing and dis-
patching. In T. Crainic and G. Laporte, editors,Fleet Man-
agement and Logistics, pages 115–126. Kluwer, 1998.

[5] M. Hickman and K. Blume. A method for scheduling in-
tegrated transit service. In8th International Conference on
Computer-Aided Scheduling of Public Transport (CASPT),
2000.

[6] I. Ioachim, J. Desrosiers, Y. Dumas, M. Solomon, and D. Vil-
leneuve. Clustering algorithm for door-to-door handicapped
transportation.Transportation Science, 29(1):63–78, 1995.

[7] J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. Wilson.
A heuristic algorithm for the multi-vehicle advance request
dial-a-ride problem with time windows.Transportation Re-
search, 20 B(3):243–257, 1986.

[8] R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors,Complexity of Computer
Computations, pages 85–104. Plenum Press, New York,
1972.

[9] R. Kohout and K. Erol. In-time agent-based vehicle rout-
ing with a stochastic improvement heuristic. InProceed-
ings of the 6th National Conference on Artificial Intelligence
(AAAI-99); Proceedings of the 11th Conference on Innova-
tive Applications of Artificial Intelligence, pages 864–869,
Menlo Park, Cal., July 18–22 1999. AAAI/MIT Press.

[10] G. Laporte and I. H. Osman. Routing problems: A bibliog-
raphy.Annals of Operations Research, 61:227–262, 1995.

[11] S. Mitrovic-Minic. Pickup and delivery problem with time
windows: A survey. Technical Report TR 1998-12, School of
Computing Science, Simon Fraser University, Burnaby, BC,
Canada, May 1998.

[12] W. P. Nanry and J. W. Barnes. Solving the pickup and deliv-
ery problem with time windows using reactive tabu search.
Transportation Research, 34B:107–121, 2000.

[13] H. Psaraftis. Dynamic vehicle routing: status and prospects.
Annals of Operations Research, 61:143–164, 1995.

[14] M. W. P. Savelsbergh and M. Sol. The general pickup and de-
livery problem.Transportation Science, 29(1):17–29, 1995.

[15] P. M. Thompson and H. N. Psaraftis. Cyclic transfer algo-
rithm for multivehicle routing and scheduling problems.Op-
erations Research, 41(5), 1993.

[16] H. Xu, Z.-L. Chen, S. Rajagopal, and S. Arunapuram. Solv-
ing a practical pickup and delivery problem.Transportation
Science, 37(3):347–364, 2003.

