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Abstract—In this paper we propose a motion framework for
bipedal robots that decouples motion definitions from stabilizing
the robot. This simplifies motion definitions yet allows dynamic
motion adaptations. Two applications, walking and stopping on
one leg, demonstrate the power of the framework. We show that
our framework is able to perform walking and stopping on one leg
even under extreme conditions and improves walking benchmarks
significantly in the RoboCup 3D soccer simulation domain.

I. INTRODUCTION

A robot motion can be defined in many ways. When
using inverse kinematics, one automatically has to decide for
a reference frame for calculations. The obvious choice for the
robot’s trunk/torso as reference frame suits well for the purpose
of IK calculations. However, with respect to balancing motion
definitions such as walking, the torso as a twisting system lacks
the adaptation to the robot’s current tilt (x- and y-rotation) and
thereby as well to its center of mass (CoM) (Figure 1).

Fig. 1. Locally defined motions do not adapt to the current tilt and CoM.

Extending the trajectory interpolations of the motion mod-
els to also cope for the current situation (the robot’s tilt
and CoM) can be very complex and counter intuitive to
the basic calculations. Moreover it has to be done for each
motion separately and makes testing and debugging of those
calculations even more difficult.

The Trunk controlled Motion Framework described in this
paper addresses this issue by the introduction of a virtual
reference frame. Motion trajectories defined in this frame
are then automatically adapted to the current situation during
execution. This way motion definitions keep as simple as in the
local case, but implicitly gain the power of dynamic situation
adaption. The control strategy is only based on the current
CoM and the orientation estimation of the trunk. Two common
and well investigated measures of humanoid robots.

The remainder of this paper is organized as follows:
Section II puts our approach in relation to existing work. In
Section III we describe our approach of the Trunk controlled
Motion Framework. Section IV describes two applications

of the TcMF: walking and stopping on one leg. Results for
those two applications in the RoboCup 3D soccer simulator
are presented in Section V. Finally in Section VI we propose
some future work and conclude.

In the context of this paper, the coordinate frames follow
the right hand rule, where the x-axis points to the right, the
y-axis to the front and the z-axis upwards. Furthermore, we
use transformation matrices of the form Ta

b , which expresses
the pose of b in the coordinates of frame a. In homogeneous
coordinates Ta

b consists of a 3 × 3 rotation matrix Ra
b and a

3× 1 translation vector tab :

Ta
b =

[
Ra

b tab
0 1

]
(1)

The videos referenced in the text are available at [9].

II. RELATED WORK

There are many approaches to create motions of robots
and more specifically to create walking gaits for bipedal
robots [7]. Simple approaches define or learn motions in joint
space, i.e. define a choreography of joint angles that produce
the desired behavior. Especially for walking, zero moment
point (ZMP) based approaches gained popularity [3]. Many
successful teams in the RoboCup competition use ZMP-based
linear inverted pendulum models (LIPMs) for walking [1], [2],
[4].

ZMP-based methods have in common that they abstract the
body to a single point mass. This has the advantage that LIPM
can directly be applied reducing mathematical complexity. On
the other side they do not consider the current orientation of the
robot when mapping from the globally modelled trajectories to
the local trunk frame. This means that any deviation from the
assumed upright orientation of the torso leads to the problems
shown in Figure 1.

In order to respond to such deviations, three recovery
strategies are typically applied: ankle push recovery, hip push
recovery and step push recovery [8]. Ankle push recovery
applies forces to the ankle joints in order to keep the CoM
within the base of support. This is what our framework actively
applies. Hip push recovery uses angular accelerations in the hip
to keep the CoM within the base of support. Step push recovery
uses so called capture steps to react to major disturbances by
changing the step plan and therefore the base of control [8],
[5]. The latter two are ’passively’ supported by the proposed
framework as explained later.

One disadvantage of typical implementations of these
strategies is that the adjustments are embedded into the motion
model. That means they are tightly coupled to the specific
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motion. The framework proposed here provides a generic
adjustment to the current tilt decoupled from specific motion
definitions. To demonstrate this, we show two applications of
the framework, walking and stopping on one leg. Also, the
proposed framework explicitly models the orientation of the
torso eliminating the implicit assumption of an upright robot.
Both is new to our knowledge.

III. TRUNK CONTROLLED MOTION FRAMEWORK

A. Approach

The idea behind the Trunk controlled Motion Framework
(TcMF) follows a simple thought: A balanced motion should
always support the center of mass. In order to achieve this,
motions should be defined with respect to a reference frame
with the center of mass as its origin. Furthermore supporting
the center of mass usually means acting against the gravity,
regardless of the actual tilt of the robot. The orientation of the
reference frame should therefore always point upright, but still
facing the horizontal view direction of the robot. We call this
reference frame Motion Frame M.

So far we simply switched the reference frame in which
we define the motions from the local trunk frame T to the
virtual Motion Frame. In order to use an inverse kinematics
solver, we now need to transform the motion trajectories back
into the trunk frame, using the following equation:

TTl = TTM TMl (2)

where TMl and TTl expresses the pose of limb l with respect
to frameM respectively T . The transformation TTM from the
Motion Frame to the trunk follows directly from the definition:

TTM =

[
RTM tTCoM
0 1

]
(3)

where RTM describes the current tilt of the trunk and tTCoM
the position of the CoM with respect to the trunk frame. By
using a static CoM position together with the identity rotation
to construct TTM, we end up with the same local motion as we
had before. However, by using the current estimation for tilt
and CoM to transform the motion trajectories, we get a motion
which is automatically adjusted to the current CoM and tilt of
the robot.

The current tilt is obtained from the orientation RWT of
the trunk with respect to the world frame W by removing the
horizontal rotation part of the orientation:

RMT = RMW RWT (4)

where RMW by definition is the rotation around the z-axis about
the horizontal view angle of the robot. In our case, the current
tilt of the robot corresponds to the orientation of the trunk with
respect to the Motion Frame. In order to plug formula 4 into
3, we need to invert formula 4:

RTM = (RMT )−1 = (RMW RWT )−1 (5)

So far motions are closed-loop in the sense that trajectories
of legs are adjusted to any tilt of the trunk and movement

of the CoM. However, they are not counteracting any tilt of
the robot. If the orientation estimation of the robot would be
perfect, this tilt adjustment would basically try to preserve the
current tilt of the trunk. In order to continuously push the
current z-axis of the trunk upright (towards the global z-axis),
we can manipulate RTM by applying an additional rotation,
interpolating from the actual z-axis of the trunk to the global
z-axis. The resulting adapted trunk frame is called T ′

.

RT
′

M = RT
′

T RTM (6)

If we now use this manipulated tilt estimation RT
′

M in for-
mula 3 to construct TT

′

M and plug TT
′

M into formula 2 to
transform the motion trajectories into T ′

, we get a motion that
is not only adjusted to the current CoM and tilt of the robot, but
also continuously trying to push the trunk upright. The amount
by how much we interpolate between the current and upright
situation specifies the weighting between the two adjustments.
Zero percent interpolation (T ′

= T → RT
′

T = RTT = I)
results solely in the first tilt adjustment. Whereas 100 percent
interpolation (T ′

= M → RT
′

T = RMT ) would simply
cancel out the first tilt adjustment, with the consequence that
the motion is still related to the current CoM, but without
any further adjustment to the current tilt of the trunk. Any
interpolation in between describes a trade off between adapting
to the current tilt and pushing the trunk upright.

The interpolation rotation RT
′

T can be constructed in differ-
ent ways. A simple method to construct RT

′

T is using a quater-
nion slerp between T and M. However, a quaternion slerp
entails an implicit weighting between the Sagittal and Coronal
adjustment, which restricts the flexibility of the controller. We
therefore use the Euler/Cardan angles convention to describe
the difference from T to M, which implicitly requires the
separation of RMT into three elemental rotations. Since we only
consider the tilt of the trunk without the horizontal direction,
RMT can be composed by only two elemental rotations, one
around the x-axis (Sagittal axis) and one around the y-axis
(Coronal axis), which can be interpolated separately. The
interpolation itself is realized by a simple two-dimensional
proportional controller.

Until now, the above described framework tries to maintain
an upright direction of the trunk. While this may be sufficient
to support for example a walking motion, it lacks flexibility
with respect to general motions, which may intend to maintain
a specific tilt, different from upright. However, extending
the above framework to maintain an arbitrary tilt is straight
forward. The second adjustment, responsible for maintaining
an upright state, is constructed by an interpolation between the
current state T and the upright situation M. More precisely
by an interpolated rotation between the current z-axis of the
trunk and the global z-axis. By switching the interpolation
target from the global z-axis to an arbitrary unit vector, we can
guide the second adjustment towards maintaining an arbitrary
tilt. We call this unit vector describing the intended tilt of
the trunk (intended) leaning vector. With the requirement
to specify an intended leaning vector to the TcMF, each
motion automatically describes its own adjustment target. An
example motion definition together with the two adjustments
is illustrated in Figure 2.
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Fig. 2. An automatically adapted motion defined in the virtual motion frame.
The general motion definition (left) is first adapted to the current tilt of the
trunk (center) and then manipulated to push the trunk towards the intended
leaning vector (right).

B. Framework Integration

In the context of the TcMF, we consider motion definitions
based on inverse kinematics, that model trajectories in three-
dimensional space for all relevant limbs. A motion using the
TcMF typically consists of three components (see Figure 3):

• Motion Model:
The motion model specifies the basic motion trajec-
tories for all relevant limbs of the robot. It provides
the virtual targets (left/right foot/arm target poses in
the motion frame) together with an intended leaning
vector for each cycle.

• Trunk Controller:
The trunk controller implements the above presented
approach. It is responsible for the mapping from the
motion frame to the local trunk frame, dependent on
the current estimations for trunk orientation and CoM
position.

• Inverse Kinematics Solver:
An arbitrary IK solver is required to map the adjusted
target poses into joint space.

Motion Model

Trunk Controller

IK-Solver

robot state

virtual targets &
   intended leaning

adjusted local
   targets

trunk orientation 
& CoM     

estimation     

target angles

Fig. 3. Component diagram of a motion using the TcMF.

In the beginning of each execution cycle, the motion model
is triggered to update its target state (e.g. to progress in the
modelled motion trajectories). After that, the virtual targets
and the intended leaning vector are forwarded to the trunk
controller, which maps the virtual targets to the local trunk
frame. The resulting adjusted set of target poses is then used

by an inverse kinematics solver to determine the target angles
of the involved joints.

A key aspect of the TcMF is its generality. The three
components mentioned above can be implemented in a layered
structure. In our case, the IK solver is integrated in the robot
model abstraction, a layer below the actual motion definitions.
The TcMF can be integrated as an intermediate layer between
the motion model and the IK solver. By extending the interface
to the TcMF with a Boolean parameter, a motion model can
command the TcMF to replace the dynamic trunk controller
with a static adjustment to the intended leaning vector. To get
a completely static adjustment of the motion, we even use a
static CoM position in the pelvis of the robot in this case. This
way, the TcMF can be reduced to a shift of the motion about
this static CoM position, which allows for an easy integration
of existing motion definitions.

IV. APPLICATIONS

As explained before, the TcMF is a framework to decouple
motion definitions from the problem of maintaining a specified
trunk orientation. In this section we show two applications of
the TcMF, (omnidirectional) walking and stopping balanced
on one leg (for kicking).

A. Walking

The walk motion consists of a simple trajectory of a linear
movement for the support leg and a sinoidal movement for the
free leg. The trajectory of the right leg while moving forward
with a step size of 9 cm is shown in Figure 4. The walk is
specified as an 18 cycle (50 Hz) motion so a complete step
cycle takes 0.36 s. The trajectory has been optimized to the
maximum motor speed of the simulated Nao of 7.03 degrees
per 20 ms. Only in 3 of the 18 cycles the inverse kinematics
is not limited by the maximum speed as shown in Figure 5.

Fig. 4. Right foot trajectory when walking forward.

Independent from this trajectory, a torso leaning can be
specified. Figure 6 shows two examples of static leaning
definitions. Images three and four show a 30 degree forward
leaning while walking forward at 0.8 m/s. Images five and six
show a 20 degree sideward leaning while walking forward at
0.5 m/s. The CoM is shown as an olive circle in the wire
frames. Dynamic leaning definitions are possible. A more
natural example would be to lean forward dependent on the
forward acceleration of the robot.



Fig. 6. Walk as an application of the TcMF. Image one and two: Nao upright. Image three and four: walking with 30 degrees forward leaning. Image five and
six: walking with 20 degrees sideward leaning.

Fig. 5. Motor speeds of the right leg when walking forward.

B. One Leg Stopping

A considerable amount of time can be saved for kicking,
if the robot does not have to stop on both legs before kicking.
It also makes it possible to place the support foot at the side
of the ball. This section describes how TcMF is used to stop
on one leg and keeping balance for kicking.

One leg stopping is divided into three motions: a final step
motion, a get on leg motion and a balance on leg motion. The
final step motion is defined by the ball relative position of the
support foot, the desired global kick direction and which of
the two legs should be support foot. The motion itself places
the second last step before getting on one leg. Unlike walking
this motion performs 2/3 of the step distance by the support
leg to shift the CoM to the final balancing leg. Also it makes
sure to turn appropriately. Since the Nao robot is not able to
do inward turns, any remaining turn angle to the right, if the
final support foot is the right foot, have to be done with the
second last step. The get on leg motion performs the final step
and specifies an appropriate trunk leaning. It also makes sure
that the free foot is started to be moved towards a kicking
position. Finally, it also performs any remaining turn to the
desired kick direction. Information like which is the support
foot is gained from the previous motion by a mechanism called
motion morphing. The balance on leg motion finally stabilizes
the robot standing already on one leg, adjusts the height of the
hip to proper kick height and defines the final trunk leaning
required for the kick. The kick itself is currently performed
in joint space outside the TcMF. The end of each motion is
shown in Figure 7 for a straight kick.

V. RESULTS

Experiments in this section have been conducted with the
RoboCup 3D soccer simulation server version 0.6.6 [6] on a
simulated Nao robot.

A. Walking

To demonstrate the effectiveness of TcMF a first experi-
ment let the robot walk forward for four seconds with a speed
of 0.5 m/s. The first two seconds the desired torso leaning was
set to 30 degrees forward leaning. The last two seconds the
desired torso leaning was upright again to see how effective
the trunk controller can adjust to the new leaning.

Figure 8 shows the x and y components of the torso’s
z-vector over time. Starting from upright position, it takes
the robot less than one second to get into 30 degree forward
leaning. When the desired trunk leaning is changed to upright
at 2s after the start, the robot is upright again within almost half
a second. During the whole time the robot remains walking.

Fig. 8. Adjustment of torso orientation over time.

Figure 9 shows the range of torso rotations in which the
robot is still able to walk. The setup is like above, 2 seconds
walking with a leaning followed by two seconds walking
upright. The leaning was varied from 30 degrees backward
leaning to 30 degrees forward leaning and for each of these
values also from 30 degrees left to 30 degrees right leaning.
Each point in Figure 9 is the average of 40 runs counting the
average probability not to fall down.



Fig. 7. Stop on one leg as an application of the TcMF. First image: end of final step motion. Second image: end of get on leg motion. Third image: end of
balance on leg motion. Fourth to Sixth image: same from front.

The robot is able to walk with 30 degrees forward and
25 degrees backward leaning, if there is no sideward leaning.
It is also able to walk with 20 degrees side leaning in
both sides if there is no forward-backward leaning. Even a
15 degrees forward and sideward leaning can be sustained
while walking and corrected upright when desired after two
seconds. The asymmetry of forward versus backward leaning
is due to limitations of the robot’s hip and knee pitch joint’s
working areas. The walked distance in the green area is almost
unaffected by the leaning of the torso as can be seen in
Figure 10 [Videos 1-4].

Fig. 9. Possibility to not fall down while walking forward with the specified
leaning.

In a next and less artificial experiment, the robot was
benchmarked on more typical motions that occur during a
soccer game. Each of the results is an average of 100 runs
of 6 seconds each. Table I shows the results. The trunk con-
trolled motions show significantly better results in backward,
sideward, diagonal and turning tasks. For the latter two the
difference is directly visible when looking at the motion.
Especially during fast turning the robot drifts from its upright
orientation from time to time. Trunk control establishes upright
orientation quickly, while without trunk control the robot
even falls in six of the 100 turn motions. Since the forward
walk motion is relatively stable by itself in the absence of

Fig. 10. Distance walked with leaning.

other robots or accelerations, trunk control does not have a
significant impact on the forward benchmark [Videos 5-8].

TABLE I. COMPARISON OF BENCHMARK RESULTS (SIGNIFICANTLY
BETTER RESULTS IN BOLD FONT).

Benchmark Classic (uncontrolled) Trunk controlled

Forward (m/s) 0.85 0.84

Backward (m/s) 0.75 0.78
Sideward (m/s) 0.48 0.56
Diagonal (m/s) 0.62 0.73
Turning (deg/s) 158.1 179.4

B. One Leg Stopping

To evaluate stopping on one leg, the robot walked straight
for 1.4 seconds and then stopped on the left leg. We varied
the speed at which the robot was walking from 0 to 0.85 m/s
and the desired horizontal turn angle from 0 to 100 degrees.
Each result is an average of 40 trials.

Figure 11 shows the reliability of the one leg stopping
motions. Even with 0.8 m/s the robot is able to stop on one leg
reliably for a range of turn angles. For a considerable speed of
0.6 m/s an effective turn of 50 degrees is reliably achievable.

Figure 12 shows the effective turning angle for the various
settings. The values are somewhat lower than the desired
angles especially for huge turns. The main reason is that the
fix amount of time we defined for a step does not suffice for
huge turns. The yaw-pitch joint in the hip is at its limit [Videos
9,10].



Fig. 11. Probability of not falling down when stopping at different speeds
and with different turn angles.

Fig. 12. Effective turn amount when stopping.

VI. CONCLUSION

With the introduction of a virtual reference frame for
motion definitions in combination with the mapping to the
trunk frame of the robot, we constructed a framework which
is able to dynamically adjust motions to the current tilt and
CoM of the robot. The intended leaning vector allows motion
definitions to describe the intended tilt of the trunk during
the motion in an intuitive way. By using a control strategy to
interpolate between the current and intended tilt of the trunk,
the framework is able to support motions in reaching and
holding an intended tilt during their execution. The presented
framework can be easily integrated as an intermediate layer
between the actual motion model and the IK solver. An
additional parameter, allowing to switch between the dynamic
controller and a static transformation, provides more flexibility
and helps integrating existing motion definitions.

In general, the approach described in this paper is not able
to dynamically adjust an arbitrary motion in such a way that
the robot keeps stable and balanced. The suggested framework
merely provides a generalized version of a motion adjustment
to the current tilt and CoM of the robot, which is abstracted
by the intended leaning. This is just one low level approach
of maintaining the balance. If the actually executed motion
is generally unstable, the TcMF will not prevent the robot
from falling down. However, as results show, the TcMF is

able to support generally stable motions during execution by
maintaining a certain trunk stability. External disturbances and
deviations from the expected tilt are automatically incorporated
in the motion during execution and thus less harmful.

The TcMF is based on the estimations for the position of
the CoM and the orientation of the trunk. While the CoM
can be calculated quite exactly and is less important in the
adjustment, the estimation for the orientation of the trunk is
more complex and error prone and have crucial influence on
the adjustment. Any drift in orientation is directly reflected by
the TcMF and if the drift in orientation estimation becomes
bigger than the interpolation rate of the trunk controller,
the TcMF will rapidly cause the robot to collapse. Another
problem is a flickering orientation estimation, which has direct
impact on the smoothness and amplitudes of the resulting
motion trajectories. Particularly in the case of a kick trajectory,
where smoothness, speed and accuracy are very important, this
framework might not be the best choice. However, the TcMF is
only dependent on the x- and y-rotation part of the orientation
estimation and well known probabilistic methods, like the
Kalman Filter, provide more stable orientation estimations by
incorporating multiple sensor information.

The current framework uses a proportional control strategy
for adapting to the intended leaning vector. While first results
show an acceptable general control behavior, different control
strategies might perform better across different motions. By
taking the velocities and accelerations of the CoM into ac-
count, more sophisticated control strategies can be applied to
react more systematically to external disturbances. Apart from
classical controllers, machine learning techniques can be used
to learn beneficial control strategies.
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