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Abstract. In this TDP we describe our framework for learning new
behaviors from scratch. It has been the core feature to advance from 5th
to 2nd place in RoboCup 2017. The content is based on a paper presented
at the RoboCup Symposium 2017 [1], but adds some new results achieved
after publishing the paper.

1 Introduction

Learning to kick is common in many RoboCup leagues. A good overview can
be found in [4]. However, none of these report on kicking with toed robots.
MacAlpine et al. [5] use a layered learning approach to learn a set of behaviors
in the RoboCup 3D soccer simulator. They learn keyframes for kicking behaviors
and parameters for a model-based walking. Although the work is not focused on
learning to use toes, they report on an up to 60% improvement in overall soccer
game play using a Nao robot variation with toes. This demonstrates the ability
of their approach to generalize to different robot models, but is still model-based
for walking. Abdolmaleki et al.[2] use a keyframe based approach and CMA-ES,
as we do, to learn a kick with controlled distance, which achieves longer kick
distances than reported here, but also requires considerably longer preparation
time. However, their approach is limited to two keyframes resulting in 25 learning
parameters, while our approach is not limited to an upper number of keyframes
(see Section 2). Also they do not make use of toes. It is interesting to see, that
also in their kick, the robot moves to the tip of its support foot to lengthen the
support leg. Not using toes, their kick results in a falling robot after each kick.

The framework used in our team generates raw output data during learning
without using an underlying robot- or behavior-model. To demonstrate this, we
present learning results on different robot models (focusing on a simulated Nao
robot with toes) and two very different kick behaviors without an underlying
model.

2 Approach

The guiding goal behind our approach is to create a framework that is model-
free. With model-free we depict an approach that does not make any assumptions



about a robot’s architecture nor the task to be performed. Thus, from the view-
point of learning, our model consists of a set of flat parameters. These parameters
are later grounded inside the domain. In our case, the grounding would mean
to create 50 joint angles or angular speed values per second for each of the 24
joints of NaoToe. This would result in 1200 values to learn for a behavior with
one second duration assuming the 50 Hz frequency of the simulator. This seemed
unreasonable for time being and led to some steps of relaxing the ultimate goal.

As a first step, the search space has been limited to the leg joints only. This
effectively limits the current implementation of the approach to leg behaviors,
excluding, for example, behaviors to get up. Also, instead of providing 50 values
per second for each joint, we make use of the fact that output values of a joint
over time are not independent. Therefore, we learn keyframes, i.e. all joint angles
for discrete phases of movement together with the duration of the phase from
keyframe to keyframe. The experiments described in this paper used two to
eight of such phases. The number of phases is variable between learning runs,
but not subject to learning for now, except for skipping phases by learning a
zero duration for it.

The RoboCup server requires robots to send the actual angular speed of each
joint as a command. So the first representation used in this work is to directly
learn the speed values to be sent to the simulator. This requires to learn 15
parameters per phase (14 joints + 1 for the duration of the phase) resulting
in 30, 60, 90 and 120 parameters for the 2, 4, 6, 8 phases worked with. The
disadvantage of this approach is that the speed will be constant during one
phase and will especially not adapt to discrepancies of the commanded and the
true motor movement.

The second representation therefore interpreted the parameters as angular
values to reach at the end of a phase as is done in [5] for kicking behaviors. A
simple controller divided the difference of the current angle and the goal angle of
each joint by the duration and sent a speed accordingly. The two representations
differ in cases where the motor does not follow the commanded speed exactly.
Using keyframes of angles will adjust the speeds to this situation.

A third representation used a combination of angular value and the maximum
amount of angular speed each joint should have. The direction of movement
is entirely encoded in the angular values, but the speed is a combination of
representation one and two above. If the amount of angular speed does not allow
to reach the angular value, the joint behaves like in version 1. If the amount of
angular speed is bigger, the joint behaves like version 2. This almost doubles the
amount of parameters to learn, but the co-domain of values for the speed values
is half the size, since here we only require an absolute amount of angular speed.

Interpolation between keyframes of angles is linear for now. It could be
changed to polynoms or splines, but we do not expect a big difference since
the resulting behavior is anyhow smoothened by the inertia of body parts and
since phases can be and are learned to be short in time if the difference from
linear to polynomial matters.



Learning is done using plain genetic algorithms and covariance matrix adap-
tation evolutionary strategies (CMA-ES) [3]. Feedback from the domain is pro-
vided by a fitness function that defines the utility of a robot. Currently imple-
mented fitness functions use ball position, robot orientation and position during
or at the end of a run. The decision maker to trigger the behavior also uses foot
force sensors.

To summarize, the following domain knowledge is built into our approach:

– the system has to provide values at 50Hz (used as angular speeds of the
joints)

– there are up to 232 free parameters for which we know the range of reasonable
values (defined by minimum and maximum joint angles and angular speeds
and maximum phase duration)

– a fitness function using domain information gives feedback about the utility
of a parameter set

– a kicking behavior is made possible by moving the player near the vicinity
of the ball.

The following domain knowledge is not required or built into the system:

– geometry, mass of body parts
– position or axis of joints
– the robot type (humanoid, four-legged, ...)

3 Results

The first behaviors to learn were kicks. Experiments have been conducted as
follows. The robot connects to the server and is beamed to a position favorable
for kicking. It then starts to step in place. Kicking without stepping is easier
to achieve, but does not resemble typical situations during a real game. The
step in place is a model-based, inverse-kinematic walk and is not subject to this
learning for now. After 1.4s, the agent is free to decide to kick. It will then decide
to kick as soon as foot pressure sensors show a favorable condition. In this case
that means when kicking with the right leg, the left leg had to just touch the
ground and the right leg had to leave the ground. After the kick behavior, the
agent continues to step in place until the overall run took five seconds. A run
is stopped earlier if the agent falls (z component of torso’s up-vector < 0.5).
This will typically be the case for most of the individuals of the initial random
population.

Table 1 shows the influence of the three representations used for the learning
parameters as well as the influence of using different amounts of phases. Each
value in the table is the result of 400.000 kicks performed using genetic algo-
rithms. The best kick has been learned using version 3 and 4 phases ending in
a kick that is more than 8m on average. Due to the long learning times, no
oversampling for the results in the table has been used, so there is certainly
some noise in the single values. However, in all of the runs the agent was able



to learn at least a reasonable kick. Averaging over the four runs for different
phases, version 3 (learning angular values and speeds) had the highest utility.
The value for 8 phases just learning angular speeds is missing due to a problem
with the simulator that lets the robot explode in some situations. This happened
too often in the 8 phase angular speed scenario to create sensible learning data
(see below).

Table 1. Influence of representation and number of phases.

Phases 2 4 6 8 Average

Just Speed 6.4 3.5 5.4 - 5.1

Just Angles 4.2 3.7 4.4 5.0 4.3

Angles and Speed 4.1 8.1 7.2 5.3 6.2

Average 4.9 5.7 5.7 5.15 5.2

The result of the learning process for NaoToe learning angles and speeds with
four phases is shown in Figure 1. It was achieved using a plain genetic algorithm
with

– population size: 200
– genders: 2
– parents per individual: 2
– individual mutation probability: 0.1
– gene mutation probability: 0.1
– selection: Monte-Carlo + take over best 10%
– recombination: Multi-Crossover.

Utility function is the kick distance (positive x-coordinate) minus the absolute
amount of y-deviation of a straight kick minus a penalty of 2 for falling. The
factor two has been chosen as a result of initial experiments. A much lower
penalty resulted in better kick distances but the robot falling regularly. A much
higher penalty did not result in good kicks, as if it is easier to learn to kick first
and to then try keeping upright as opposed to the other way around.

The figure shows the average fitness of a generation and the best individual
of 128 generations measured with 10-fold oversampling. It combines the results
of 200 ∗ 10 ∗ 128 = 256, 000 kicks performed during learning in about two days
of simulation. As can be seen, the learning resulted in a kick distance of more
than 8m.

The resulting movement of the robot is shown in Figure 2. The robot learned
to improve the kick considerably by stepping on the toes of its support leg, seen
especially in sub-images three and four. Not shown in the figure: after the kick,
the robot also learned to get back into position to successfully continue stepping
in place.

The overall kick takes eight simulation cycles, which takes 0.16s to perform.
A comparable hand-tuned kick reaching 8m takes about 1s, a kick reaching 15m



Fig. 1. Learning curve of plain genetic learning with NaoToe.

Fig. 2. Sequence of movement when kicking with NaoToe.

takes about 2s. With a speed of approximately 1m/s for the fastest teams, this
means we can perform the new kick before opponents reach the ball in situations
where opponents are almost one (two) meter(s) closer compared to comparable
kicks in the league. Although the fitness function does not explicitly contain a
preference for short times, implicitly quick kicks are preferred by the penalty
for falling. The longer the robot is on one leg, the higher the likeliness of falling
down.

The learning has been performed from a fixed starting position with respect
to the ball. Figure 3 shows the dependency of the kick’s success to the initial
position of the player. As can be seen, a reasonable area is covered in which the
kick can be performed. The same area will be covered symmetrically by a left
leg kick. The x-axis and y-axis are the x and y coordinate of the player in the
ball’s coordinate system. Colors are utilities which map approximately to kick
distance in meters. Distances to the ball of less than 0.16m result in the robot
touching the ball before the kick. Each point on the heatmap is the average of
50 kicks from the corresponding starting position of the NaoToe.

Learning in the meantime showed that this model-free approach is able to
learn other behaviors. With the same framework and by simply changing the
utility function we learned to kick sidewards, backwards and diagonally. We also
started to learn to kick while walking towards the ball.



Fig. 3. Heatmap of the influence of the ball position on kick success.

When trying to learn to kick a far ball, the robot did not learn to stretch
its leg accordingly, as we would have expected, but learned to walk another
step closer to the ball before kicking. We knew that learning such a behavior is
possible with our approach in principle, but were surprised that the algorithm
is able to find such a solution in this huge search space.

A similarly unexpected behavior resulted from learning to kick a ball that
is positioned to a far left (or right, 0.2m) position in front of the robot. Instead
of learning to stretch its leg to the side, the robot learned to stop from full
speed walking with a single step and then walked sideways to the ball. Both
results show that there is huge potential in this approach of model-free learning
of behaviors.
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