
The magmaOffenburg 2015 RoboCup 3D
Simulation Team

Klaus Dorer, Jens Fischer, Stefan Glaser, David Weiler1

Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany

Abstract. This paper describes the magmaOffenburg 3D simulation
team qualified as 3rd in Brazil for RoboCup 2015. While last year’s
TDP focused on how we statistically evaluate new features, this year we
describe our team software released after Brazil 2014.

1 Introduction

One important aspect of RoboCup is its strong community. This community is
intended to be an open community. In order to simplify the entry of new teams
into 3D soccer simulation, we believe it is necessary to provide high quality base
code with which teams can enter the league more easily. This and other releases
of agent code or libraries can be found at [1]. We believe that a release is also
beneficial to us, because it means we have to keep the software in a clean state
and are forced to document it. Part of this documentation is this TDP.

Section 2 explains the main architecture of the runtime of our software. In
section 3 we present the components in more detail.

2 Architecture

Our runtime code is organized as a three layer architecture (see Fig. 1). Each
layer may only depend on the next lower layer, i.e. the decision layer, for example,
only depends on the model layer and not on the channel layer, while the channel
layer does not depend on any other layers. It is therefore possible to only use the
channel layer of our software, or just use the channel and model layer without
the decision layer.

Inside each layer, our code uses a component based architecture. Each compo-
nent consist of two parts: the interface part and one or possibly more implemen-
tation parts. One component may only depend on the interface part of another
component, but not on the implementation part. In Fig. 1 the selected com-
ponent Decision, for example, has allowed dependencies to Belief and Behavior
(green arrows and components shown in green), but not to their implementa-
tions.

Folder srcAgent contains the components for the runtime in package magma.agent
and magma.robots. Both contain the packages shown in Fig. 1 with the compo-
nent interfaces in the package itself and the implementation(s) in subpackag(es).



magma.agent contains all robot model independent code. magma.robots has a
subfolder for each supported robot type. Each type follows again the same folder
structure as magma.agent. It is worth to note that also our real robot sweaty is
run by this software inside this architecture by providing sweaty specific parts
in another (not released) subfolder agent.robots.sweaty.

The three components flags, general and meta that are not part of Fig. 1 will
be explained in the next section.

Fig. 1. Architecture of the magmaOffenburg Runtime.



3 Components

In this section we describe each of the components in more detail.

3.1 Core

The following components are outside the general runtime architecture. They
contain, for example, the component factory and will therefore possibly depend
on all other components.

General The core component, we call general, mainly contains the component
factory and the agent runtime. The first follows the factory pattern and creates
the desired component implementations. It is subclassed, for example, by differ-
ent robot types or to provide special learning setups (not released). We decided
not to use an off the shelf inversion of controll container like, for example, guice,
but use our own explicit factories. All components use constructor injection to
inject the dependencies. The agent runtime implements the main update loop
for the components.

Meta The meta component contains two parts: server meta modeling and robot
meta modeling. The server meta models contain all necessary information of field
sizes and flag positions for all versions of the competition since 2009. The robot
meta models contain all information of the robots body parts, sizes, joint posi-
tions and rotation axes and sensor positions. Each robot model that varies from
the standard nao has to overwrite the meta model and provide the corresponding
information.

3.2 Channel

The next components are part of the channel layer and ensure communication
with the server.

Perception Perception contains interfaces and implementations for all visi-
ble and sensible information in the league. These perceptor classes are used to
transport the information into the model layer. The Perception class itself is
only a container for the perceptors. Main part of this component is the Server-
MessageParser which parses the strings received from the server into perceptor
objects.

Action Action contains interfaces and implementations for all actions that can
be triggered. More specifically it knows how to encode those actions, represented
as effectors, into a string representation for the server.



Communication This package implements the so called channels and the chan-
nel manager. Channels are input or output connections that can operate asyn-
chronously to receive or send information. The channel manager manages the
channels and triggers model updates. For the application on real robots this is
quite handy. In 3D simulation all information is sent and received through one
channel (SimsparkChannel) and therefore does not make use of this feature.

3.3 Model

The following components build the model layer and store all information the
agent has from itself and the world around it. Like the channel layer also the
model layer has been completely released.

Agentmodel The agent model contains all information the agent knows about
its own state. It has three object trees: the sensed body model contains informa-
tion we have received as perceptions, the expected body model, that is based on
the sensed model but updated with the information we have sent to the server
and expect to be true next sensing cycle and the future body model that is
writable and contains the state we want to be in. The latter is used to create
the commands to the server.

The agent model also contains a complete and efficient implementation of a
reverse kinematics calculation for the Nao types.

Worldmodel The world model stores all information we have about the soc-
cer field and game (GlobalMap) as well as our own position inside the game
(ThisPlayer). It contains the localizer sub-component that has various imple-
mentations of 2D and 3D localization algorithms.

Thoughtmodel In the thought model we store information that is not directly
perceived, but concluded from perceived data. The strategy sub-package contains
the complete role assignment and team strategy classes. The IFOCalculator de-
termines the indexical functional objects like who is the agent closest to the
ball or the opponent closest to me. The KickDirectionProfiler determines which
direction we should pass the ball to.

3.4 Decision

The decision layer contains the high level decisions the agent performs as well
as the beliefs, theses decisions are based on and the behaviors that execute the
decisions possibly by taking further mid or low level decisions.

We have decided not to release the complete decision layer in respect of other
existing teams. It would not be fair, we believe, if new teams play on a top level
by just using our release. But we added all beliefs and many behaviors and
decision makers as examples of how to use the model layer.



Belief A belief encapsulates a high level (fuzzy) belief about the world. It was
introduced to decouple decision making from the model layer in order to be
flexible as to which decision architecture to use. We have an implemenation
of extended behavior networks [9] (not released), and planned to have a BDI
architecture, but ended up to use simple decision makers so far. That is why
we now have decision, belief and behavior in one layer and allow decision to
have access to the model layer. This means that beliefs are technically no longer
necessary, but still help to encapsulate common beliefs into separate classes.

Behavior Behaviors are either simple behaviors performing exactly one action
or they are complex behaviors that first decide which more basic behavior to
perform. We support several possibilities how to specify movement behaviors:

Movement Behaviors
Each movement is subdivided into movement phases which are composed of
single joint movements (package movement).

Function Behaviors
Static behaviors can be defined using functions that model the joint angle
over time (package supportPoint). Examples of function behaviors can be
found in folder config (behaviors.nao.FunctionBehaviors.UsedBehaviors)

Motorfile Behaviors
Motorfiles specify motor angles for each joint in a column of a csv file. Each
row corresponds to a point in time. (package motor). Motorfiles could be
seen as special case of function behaviors representing piecewise linear func-
tions. Examples of motorfile behaviors can be found in folder config (behav-
iors.nao.BehaviorValues.UsedBehaviors)

A more detailed description can be found in our team description paper 2012 [2].

Complex behaviors (package complex) are composites of more basic behaviors
and contain further decisions as to which more basic behavior to perform. A
complex kick behavior, for example, may contain the decision to kick with the
right or left leg and then will perform the corresponding basic behavior. The
behaviors also encapsulate the decision, at which time a behavior switch may
occur as well as morphing of behaviors in case of compatible behaviors.

The behaviors are not the latest behaviors available in our team as described
above. The Getup used is an example of a motor behavior used in 2009. The
walk is our walk from 2010 experiencing some timing problems with respect to
the sensed and expected body model [5]. Also the kicks are not the newest ones.
This is were your work starts really using our framework.

Decision Decision contains the high level decision making of the agent. There
are different decision makers for the goalie and field players as well as for train-
ing situations in our release. We currently use a sequential architecture for our
agents, so all processing steps have to be performed within the 20 ms cycle time.



References

1. http://simspark.sourceforge.net/wiki/index.php/Agents
2. http://robocup.hs-offenburg.de/nc/downloads/
3. Glaser S and Dorer K (2013) Trunk Controlled Motion Framework. In Proceed-

ings of the 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International
Conference on Humanoid Robots, Atlanta, 2013.

4. Hochberg U, Dietsche A and Dorer K (2013) Evaporative Cooling of Actuators
for Humanoid Robots. In Proceedings of the 8th Workshop on Humanoid Soccer
Robots, IEEE-RAS International Conference on Humanoid Robots, Atlanta, 2013

5. Schindler, I.: Laufen auf zwei Beinen in der simulierten RoboCup 3D-Umgebung.
Bachelor thesis, Hochschule Offenburg, Germany (2009)

6. Dorer, K.: Modeling Human Decision Making using Extended Behavior Networks.
J Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 81–91. Springer (2010)

7. O. Obst and M. Rollmann, SPARK A Generic Simulator for Physical Multiagent
Simulations Computer Systems Science and Engineering, 20(5), September 2005

8. Dorer, K.: Extended Behavior Networks for Behavior Selection in Dynamic and
Continuous Domains. In: U. Visser, et al. (Eds.) Proceedings of the ECAI workshop
Agents in dynamic domains, Valencia, Spain (2004)

9. Dorer, K.: Behavior Networks for Continuous Domains using Situation–Dependent
Motivations. Proceedings of the Sixteenth International Conference of Artificial In-
telligence (1999) 1233–1238


