
The magmaOffenburg 2014 RoboCup 3D
Simulation Team

Klaus Dorer, Stefan Glaser1

Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany

Abstract. This paper describes the magmaOffenburg 3D simulation
team trying to qualify for RoboCup 2014. While last year’s TDP fo-
cused on how we statistically evaluate new features, this year we focus
on our Trunk controlled Motion Framework used for walking and kicking.

1 Introduction

A major step forward for the magmaOffenburg team has been the introduction
of the Trunk controlled Motion Framework (TcMF). It is a separate component
that allows to specify any motion for the legs that needs to be stabilized. It
separates motion definition from any adjustments necessary in case of deviations
from the desired trunk orientation. This makes motion definition easier, yet
produces significantly better results in the 3D soccer simulation environment.

Section 2 explains the TcMF in detail. In section 3 we present two applica-
tions of the framework, walking and stoping on one leg. Section 4 gives some
results of applying the TcMF.

2 Trunk Controlled Motion Framework

The idea behind the Trunk controlled Motion Framework (TcMF) follows a
simple thought: A balanced motion should always support the center of mass. In
order to achieve this, motions should be defined with respect to a reference frame
with the center of mass as its origin. Furthermore supporting the center of mass
usually means acting against gravity, regardless of the actual tilt of the robot.
The orientation of the reference frame should therefore always point upright,
but still facing the horizontal view direction of the robot. We call this reference
frame Motion Frame M.

So far we simply switched the reference frame in which we define the motions
from the local trunk frame T to the virtual Motion Frame. In order to use an
inverse kinematics solver, we now need to transform the motion trajectories back
into the trunk frame, using the following equation:

TTl = TTM TMl (1)

where TMl and TTl expresses the pose of limb l with respect to frame M respec-
tively T . The transformation TTM from the Motion Frame to the trunk follows
directly from the definition:

TTM =

[
RTM tTCoM

0 1

]
(2)

where RTM describes the current tilt of the trunk and tTCoM the position of the
CoM with respect to the trunk frame. By using a static CoM position together
with the identity rotation to construct TTM, we end up with the same local mo-
tion as we had before. However, by using the current estimation for tilt and CoM
to transform the motion trajectories, we get a motion which is automatically ad-
justed to the current CoM and tilt of the robot.

The current tilt is obtained from the orientation RWT of the trunk with respect
to the world frame W by removing the horizontal rotation part of the orientation:

RMT = RMW RWT (3)

where RMW by definition is the rotation around the z-axis about the horizontal
view angle of the robot. In our case, the current tilt of the robot corresponds to
the orientation of the trunk with respect to the Motion Frame. In order to plug
formula 3 into 2, we need to invert formula 3:

RTM = (RMT)−1 = (RMW RWT)−1 (4)

So far motions are closed-loop in the sense that trajectories of legs are ad-
justed to any tilt of the trunk and movement of the CoM. However, they are
not counteracting any tilt of the robot. If the orientation estimation of the robot
would be perfect, this tilt adjustment would basically try to preserve the current
tilt of the trunk. In order to continuously push the current z-axis of the trunk
upright (towards the global z-axis), we can manipulate RTM by applying an ad-
ditional rotation, interpolating from the actual z-axis of the trunk to the global
z-axis. The resulting adapted trunk frame is called T ′

.

RT
′

M = RT
′

T RTM (5)

If we now use this manipulated tilt estimation RT
′

M in formula 2 to construct

TT
′

M and plug TT
′

M into formula 1 to transform the motion trajectories into T ′
,

we get a motion that is not only adjusted to the current CoM and tilt of the
robot, but also continuously trying to push the trunk upright. The amount by
how much we interpolate between the current and upright situation specifies the
weighting between the two adjustments. Zero percent interpolation (T ′

= T →
RT

′

T = RTT = I) results solely in the first tilt adjustment. Whereas 100 percent

interpolation (T ′
= M → RT

′

T = RMT) would simply cancel out the first tilt
adjustment, with the consequence that the motion is still related to the current
CoM, but without any further adjustment to the current tilt of the trunk. Any
interpolation in between describes a trade off between adapting to the current
tilt and pushing the trunk upright.

The interpolation rotation RT
′

T can be constructed in different ways. A simple

method to construct RT
′

T is using a quaternion slerp between T and M. However,

a quaternion slerp entails an implicit weighting between the Sagittal and Coronal
adjustment, which restricts the flexibility of the controller. We therefore use the
Euler/Cardan angles convention to describe the difference from T to M, which
implicitly requires the separation of RMT into three elemental rotations. Since we
only consider the tilt of the trunk without the horizontal direction, RMT can be
composed by only two elemental rotations, one around the x-axis (Sagittal axis)
and one around the y-axis (Coronal axis), which can be interpolated separately.
The interpolation itself is realized by a simple proportional controller.

Until now, the above described framework tries to maintain an upright di-
rection of the trunk. While this may be sufficient to support for example a
walking motion, it lacks flexibility with respect to general motions, which may
intend to maintain a specific tilt, different from upright. However, extending the
above framework to maintain an arbitrary tilt is straight forward. The second
adjustment, responsible for maintaining an upright state, is constructed by an
interpolation between the current state T and the upright situation M. More
precisely by an interpolated rotation between the current z-axis of the trunk
and the global z-axis. By switching the interpolation target from the global z-
axis to an arbitrary unit vector, we can guide the second adjustment towards
maintaining an arbitrary tilt. We call this unit vector describing the intended
tilt of the trunk (intended) leaning vector. With the requirement to specify an
intended leaning vector to the TcMF, each motion automatically describes its
own adjustment target. More details can be found in [1].

A motion using the TcMF typically consists of three components (Figure 1):

Motion Model

Trunk Controller

IK-Solver

robot state

virtual targets &
 intended leaning

adjusted local
 targets

trunk orientation
& CoM

estimation

target angles

Fig. 1. Component diagram of a motion using the TcMF.

In the beginning of each execution cycle, the motion model is triggered to
update its target state (e.g. to progress in the modelled motion trajectories).
After that, the virtual targets and the intended leaning vector are forwarded to
the trunk controller, which maps the virtual targets to the local trunk frame.
The resulting adjusted set of target poses is then used by an inverse kinematics
solver to determine the target angles of the involved joints.

3 Applications

In this section we show two applications of the TcMF, (omnidirectional) walking
and stopping balanced on one leg (for kicking).

3.1 Walking

The walk motion consists of a simple trajectory of a linear movement for the
support leg and a sinoidal movement for the free leg. The walk is specified as
an 18 cycle (50 Hz) motion so a complete step cycle takes 0.36 s. The trajectory
has been optimized to the maximum motor speed of the simulated Nao of 7.03
degrees per 20 ms. Only in 3 of the 18 cycles the inverse kinematics is not limited
by the maximum speed.

Independent from this trajectory, a torso leaning can be specified. Figure 2
shows two examples of static leaning definitions. Images three and four show a
30 degree forward leaning while walking forward at 0.8 m/s. Images five and six
show a 20 degree sideward leaning while walking forward at 0.5 m/s. The CoM
is shown as an olive circle in the wire frames. Dynamic leaning definitions are
possible. A more natural example would be to lean forward dependent on the
forward acceleration of the robot.

Fig. 2. Walk as an application of the TcMF. Image one and two: Nao upright. Image
three and four: walking with 30 degrees forward leaning. Image five and six: walking
with 20 degrees sideward leaning.

3.2 One Leg Stopping

A considerable amount of time can be saved for kicking, if the robot does not
have to stop on both legs before kicking. It also makes it possible to place the
support foot at the side of the ball. This section describes how TcMF is used to
stop on one leg and keeping balance for kicking.

One leg stopping is divided into three motions: a final step motion, a get
on leg motion and a balance on leg motion. The final step motion is defined by
the ball relative position of the support foot, the desired global kick direction
and which of the two legs should be support foot. The motion itself makes sure
to turn appropriately. Since the Nao robot is not able to do inward turns, any

remaining turn angle to the right, if the final support foot is the right foot, have
to be done with the second last step. The get on leg motion performs the final
step and specifies an appropriate trunk leaning. It also makes sure that the free
foot is started to be moved towards a kicking position. Finally, it also performs
any remaining turn to the desired kick direction. The balance on leg motion
finally stabilizes the robot standing already on one leg, adjusts the height of the
hip to proper kick height and defines the final trunk leaning required for the
kick. The kick itself is currently performed in joint space outside the TcMF. The
end of each motion is shown in Figure 3 for a straight kick.

Fig. 3. Stop on one leg as an application of the TcMF. First image: end of final step
motion. Second image: end of get on leg motion. Third image: end of balance on leg
motion. Fourth to Sixth image: same from front.

4 Results

Experiments in this section have been conducted with the RoboCup 3D soccer
simulation server version 0.6.6 [5] on a simulated Nao robot.

4.1 Walking

To demonstrate the effectiveness of TcMF a first experiment let the robot walk
forward for four seconds with a speed of 0.5 m/s. The first two seconds the desired
torso leaning was set to 30 degrees forward leaning. The last two seconds the
desired torso leaning was upright again to see how effective the trunk controller
can adjust to the new leaning.

Figure 4 shows the range of torso rotations in which the robot is still able
to walk. The setup is like above, 2 seconds walking with a leaning followed by
two seconds walking upright. The leaning was varied from 30 degrees backward
leaning to 30 degrees forward leaning and for each of these values also from 30
degrees left to 30 degrees right leaning. Each point is the average of 40 runs
counting the average probability not to fall down.

The robot is able to walk with 30 degrees forward and 25 degrees backward
leaning, if there is no sideward leaning. It is also able to walk with 20 degrees
side leaning in both sides if there is no forward-backward leaning. Even a 15 de-
grees forward and sideward leaning can be sustained while walking and corrected
upright when desired after two seconds.

4.2 One Leg Stopping

To evaluate stopping on one leg, the robot walked straight for 1.4 seconds and
then stopped on the left leg. We varied the speed at which the robot was walking
from 0 to 0.85 m/s and the desired horizontal turn angle from 0 to 100 degrees.
Each result is an average of 40 trials. Figure 4 right shows the reliability of the
one leg stopping motions. Even with 0.8 m/s the robot is able to stop on one
leg reliably for a range of turn angles. For a considerable speed of 0.6 m/s an
effective turn of 50 degrees is reliably achievable.

(a) Walk (b) Stop

Fig. 4. Probability of not falling down when walking with different leanings (a) and
stopping at different speeds and with different turn angles (b).

References

1. Glaser S and Dorer K (2013) Trunk Controlled Motion Framework. In Proceed-
ings of the 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International
Conference on Humanoid Robots, Atlanta, 2013.

2. Hochberg U, Dietsche A and Dorer K (2013) Evaporative Cooling of Actuators
for Humanoid Robots. In Proceedings of the 8th Workshop on Humanoid Soccer
Robots, IEEE-RAS International Conference on Humanoid Robots, Atlanta, 2013

3. Schindler, I.: Laufen auf zwei Beinen in der simulierten RoboCup 3D-Umgebung.
Bachelor thesis, Hochschule Offenburg, Germany (2009)

4. Dorer, K.: Modeling Human Decision Making using Extended Behavior Networks.
J Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 81–91. Springer (2010)

5. O. Obst and M. Rollmann, SPARK A Generic Simulator for Physical Multiagent
Simulations Computer Systems Science and Engineering, 20(5), September 2005

6. Dorer, K.: Extended Behavior Networks for Behavior Selection in Dynamic and
Continuous Domains. In: U. Visser, et al. (Eds.) Proceedings of the ECAI workshop
Agents in dynamic domains, Valencia, Spain (2004)

7. Dorer, K.: Behavior Networks for Continuous Domains using Situation–Dependent
Motivations. Proceedings of the Sixteenth International Conference of Artificial In-
telligence (1999) 1233–1238

