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Abstract. In this paper we present how behavior networks can beby the introduction of continuous state-propositions to represent at-
extended to model behavior selection of agents in dynamic and cortributes of continuous domains. In this paper we describe how EBNs
tinuous domains. More precisely, the focus is on a mechanism foare able to select multiple behaviors in a single decision cycle to
selection of concurrent behaviors by explicit representation of rebe performed concurrently. We also show how the decidedness of
sources a behavior makes use of. Further it describes how the bbehavior selection can be used to control the intensity with which
havior selection process can be coupled with behavior execution ibehaviors are performed as is the case in biological systems [4].
continuous domains. Behaviors may be influenced by the decided- The remainder of this paper is organized as follows: Section 2 de-
ness of the behavior selection as is the case in biological systemscribes the basic concept of behavior selection using extended be-
Empirical results in the RoboCup domain show that both extensionfavior networks. In section 3 this concept is extended by introducing
improve the performance of soccer playing agents significantly. ~ concurrent behavior selection. Section 4 explains how behaviors can
be parametrized by the decidedness of the behavior selection. In sec-
tion 5 we summarize empirical results gained in the RoboCup simu-
1 INTRODUCTION lated soccer domain. Finally, in section 6 we discuss possible future

work directions before concluding.
Behavior selection in dynamic domains is complicated by the fact

that the deciding agent has limited amount of time for its decision
before the situation has changed. This is usually addressed by i EXTENDED BEHAVIOR NETWORKS

proving the speed of the decision mechanism for dynamic domaingz,sended behavior networks [5, 2, 3] have been introduced to com-
However,’thls does not take into agcount the posglblllty {0 IMProve&y;,q reactive and goal-directed behavior selection in dynamic and
the agent's performance by conducting multiple actions concurrently, o yiini ous domains. This section gives a short overview on the struc-

I\/]Icqreover_, insome d'oma:(lns, concugenthacnons Ere not simply a WaYyre of extended behavior networks and the behavior selection mech-
ot improving agents’ per ormance, ut they can become anecessaby,ism using activation spreading. The next two sections will then
condition to perform tasks. For driving a car, for example, itis atleaslyeq oyine two further extensions of EBNs, selection of concurrent be-

neC(Iesslary to tu_rn thelste_erlng whheel_and acce:e_rate or blreak CONCHviors and behavior parametrization, to improve action selection in
rently. Most action selection mechanisms result in a single action t?iynamic and continuous domains.

be performed. To overcome this limitation two possibilities exist: (1)
either the decision mechanism is provided with a (usually huge) set
of combined actions like ‘turnLeft’, ‘turnLeftAndBreak’, ‘turnLeft- 2.1 Network Definition
AndAccelerate’, etc., or (2) the decision mechanism decides on mor
complex behaviors like ‘drive’ that combine actions appropriately
leaving the detailed decision to the execution module of the agen
The later is usually the _preferred option accepting the disadvantaggqsinition 1 A goalconsists of a tupleGCon «, RCor) with
of more complex behaviors.
This situation is even complicated in continuous domains, where GConthegoal condition(conjunction of propositions, i.e. possibly
actions may be performed with variable strength, degree, duration. negated atoms), the situation in which the goal is satisfied,
For example, the ‘turnLeft’ action of the above example would haves , ¢ [0..1] the (static)importanceof the goal,
to be split into ‘turnLeft5Degrees’, ‘turnLeftl0Degrees’, ... Again it e RCon the relevance conditior{conjunction and disjunction of
is usually preferred to put the decision of the degree with which an  propositions), i.e. the situation-dependent (dynamic) importance
action is performed into the low level behavior execution module. of the goal.
Behavior selection and behavior execution is usually strictly sepa-
rated. Definition 2 A competence moduleonsists of a tupleRre b, Post
Extended behavior networks [2, 3] (EBNs) are a means to carry;) with
out behavior selection in dynamic and continuous domains. They ex-
tend original behavior networks [5, 6, 7] by explicit representation® Prethepreconditionande = 7p(Pre, s) the executabilityof the
of goals with dynamic, i.e. situation-dependent, utility function and ~competence module in situatiewhererp(Pre, s) is the (fuzzy)
truth value of the precondition in situation s;

1 Living Systems GmbH, Humboldtstrasse 11, D-78168 Donaueschinger® b the behaviorthat is performed once the module is selected for
Germany, email: kdorer@living-systems.com execution;

Extended behavior networks consist of goals and so called compe-
{ence modules that are linked into a network.




e Posta set of tuples (Effex), where Eff is an expected effect (a by 3 (defined in the set of parametdis:

proposition) ancex = P(E f f|Pre) is theprobability of Eff get- . s .

ting true after execution of behaviéy ar = fay, " + Z kg, » @)
e g theactivatione IR, representing a notion of the expected utility i

of the behavior (see below). Wherea’,igi is the maximal activation modulk receives at time

o _ ) from goal g; to which the module is linked directly or indirectly
Definition 3 An extended behavior netwo(EEBN) consists of a tu-  across incoming successor and conflictor links of other competence
ple (G, M, 1), whereg is a set of goalsM is a set of competence modules. For more details on activation spreading see [2, 3].

modules andl is a set ofparametershat control activation spread-  Behavior selection is done locally in each competence module in
ing (see below) a cycle containing the following steps:
e v € [0..1] controls the influence of activation of modules, 1. Calculate the activation of the module.
e § € [0..1] controls the influence of inhibition of modules, 2. Calculate the executabilieyof the module. _
e 3 € [0..1] the inertia of activation across activation cycles, 3. Calculate the execution-valuga, e), which is a monotonically
e 0 € [0..a] the activation threshold that a module has to exceed to increasing function of the activation and executability of a module
be selected for execution, withthe upper bound for a module’s  (calculated e.g. by multiplication) [2].
activation, 4. If the highest valué(a, ¢) of all competence modules lies above
e AQ €]0..0] the threshold decay. a threshold (defined in the set of parametdi3, execute the cor-

responding competence module’s behabjoesed to its original
value inTIT and go to 1.
2.2 Behavior Selection 5. Otherwise reducé by A¢ (also defined idI) and go to 1.

In the first cycle of activation spreading, only competence modules

The decision of which behavior to adopt should be based on the thgat directly have links to goals get activation. Activation by succes-
expected utility out of executing such behavior. In EBNSs, the ex-sor and conflictor links is zero at that time, because no module has
pected utility of a behavior is approximated by a mechanism calledyctivation initially. So only behaviors that directly satisfy a goal will
activation spreadingThe competence modules are connected to theye taken into account for selection. In the second cycle also com-
goals and other competence modules of the network. Across tho%fetence modules get activation that may reach the goal within two
links activation is spread from the goals to the competence modulegctions. They got activation through successor and conflictor links to
and among competence modules. modules that got activation in the first cycle. The more cycles activa-

A competence module receivestivationdirectly from a goal if  tjon is spread the longer is the (timely) horizon of action sequences
the module has an effect that is equal to a proposition of the goalken into account that lead to goals. This cyclic approximation of ex-
condition of that goal. The amount of activation depends on the prObpected utility of a behavior in EBNs is somewhat similar to a growing
ability ex of the effect to come true and the utility of the proposition pgrizon when solving a Markov Decision Process (see e.g. [1]). For
in the goal condition. Activation from a goal represents the expecteghanavior selection a good trade-off is therefore necessary between
utility of the behavior to reach that goal. The utility of propositions running enough activation spreading cycles to look far enough into
that are part of a goal condition can be directly derived from the im-ne future and acting fast enough.
portance and relevance of the goal [2].

A competence module imhibited by a goal if it has an effect
proposition that is equal to a proposition of the goal condition and3 CONCURRENT BEHAVIOR SELECTION
one of the two propositions is negated. Inhibition represents negativa shortcoming of the above described mechanism for behavior se-
expected utility and is used to avoid the execution of behaviors thaection is that behavior selection results in a single behavior to be
would lead to undesired effects. performed at any time. Humans on the other side are able to per-

A competence module is linked to another competence module formed well trained behaviors concurrently if they do not use the
y if z has an effect that is equal to a proposition of the preconditiorsame resources [10, 8]. A typist, for example, is able to type a text
of y. y is called asuccessomodule ofz. Modulex gets activation  she is reading and speak aloud a text she is listening to at the same
from the successor the amount of which depends on the utility of théime [10]. Performing behaviors that use the same resources usually
precondition and the probability of the effect to come true. The utility ends with no behavior performed successfully. For instance, when a
of propositions that are not part of a goal condition is not availablehuman is undecided between the words "close’ and 'shut’ it may end
directly. It can be determined indirectly using the activation of theup pronouncing a non existing word "clut’ [9]. The common resource
containing module and the truth value of the proposition [2]. In this‘language processing’ may not be used by multiple behaviors. It may,
way, unsatisfied preconditions get implicit sub-goals of the networkhowever, be influenced by multiple goals.
Their utility directly depends on the utility of the competence module  Sequential behavior selection of Maes networks [5] avoids the
itself. problem of resource conflicts. The disadvantage is on the one side

Finally a competence moduleis linked to another competence g reduced performance in domains where multiple behaviors may be
moduley if it has an effect that is equal to a proposition of the pre- performed in parallel. On the other side it may prevent the comple-
condition ofy and one of the two propositions is negatgds called  tion of tasks completely for which concurrent behavior execution is
a conflictor of =, because it has an effect that destroys an alreadyssential (like car driving).
satisfied precondition of. Again, a conflictor link fromz to y is To perform multiple behaviors in parallel the agent needs knowl-
inhibiting (negative activation) to avoid undesired effects. edge about the resources used by the behaviors. The definition of

The activation of a modulé at time¢ is then the sum of all in-  competence modules and extended behavior networks has therefore
coming activation and the previous activation of the module decayetb be extended with the notion of resources.



Let R be the set of all resources ang : R xS — IRt afunction  activation value is prevented by a missing resource, another module
that assigns to each element®fan amount of available resources With less activation not using the missing resource may be performed.
in the domain in state s. The functiep : M x R xS — IR, with Modules with a disjunct set of resourcBss may be performed con-

M the set of all competence modules, defines the expected amouggrrently.
of resource units used by the corresponding competence module in Besides allowing concurrent behavior selection, this algorithm

state s to reach its effects. overcomes another limitation of original behavior networks. Behav-
ior selection has previously been done by selecting the most active
Definition 4 Aresource nodss a tuple (es, g, Ores) with executable competence module for execution. Unfortunately, this in-

formation can not be calculated locally in a competence module.
Therefore, the process of action selection could not be calculated
distributively in each competence module. By introducing resource
nodes, a competence module is now able to perform action selection
locally. All information is available within the node or within linked
nodes. The information a competence module gets across a link to a
resource node is the current activation threshold and the number of
bound resource units. Information a resource node gets from a com-
petence module using the resource includes the number of resource
units to bind and release and when to reset activation threshold.

e res € R theresourcaepresented by the node,

e g € IR the amount obound resource unité.e. units that are
bound by a currently executing competence module and

e Ores €]0..0] the resource specifiactivation thresholdwhered
is the global activation threshold of the network).

The definition of a competence module can then be extended to:

Definition 5 A competence modulé consists of a tupleRre b,
Post Res a) with Pre b, Postand a as defined above andesis
a set ofresourceses € R used by behaviob. 77 (k, res, s) is the
situation-dependent amount of resource units expected to be used dy BEHAVIOR PARAMETRIZATION
behaviorb.
Most decision mechanisms for agents only have influence on the
Definition 6 Anextended behavior netwoBBN consists of a tuple  decision which behavior the agent should perform, but not on the
(G, M,U,TI), whereG is a set of goals,;M a set of competence behavior execution itself. In biological systems, however, the deter-
modules]{ a set ofresource nodeandII a set ofparametergsee ~ Minedness of a decision has influence on the execution of a behavior.
section 2). “Intensity and endurance of an activity is determined by the voli-
tion strength of the goal intention”[4]. Of course different intensities
To coordinate concurrent behaviors the competence modules df.e. strength/degree of execution) of the same basic behavior could
M are connected with resource node#4nA competence module also be modeled by distinguishing these as different behaviors and
has for each resourees € Resa link to the corresponding resource let the decision mechanism decide between those. Obviously, at least
node. This link enables the competence module to check the availn continuous domains, this would increase the number of behav-
ability of the resource. Concurrent behavior selection may thereforérs considerably making the decision process much more complex.
be calculated locally in each competence module. Itis done in a cycl&herefore it would be desirable if the determinedness of the agent’s
containing the following steps: decision would directly influence the execution of the behavior itself.
The behavior ‘run to ball' of a soccer agent, for example, could be
more or less intens depending on the determinedness of the agent to
run. The higher the expected utility and the executability of the be-
havior the more effective it should be to spend resources (stamina) on
(a) Check ifh exceeds the activation threshdlg... of the corre- this be_havior. An a(_jequate measure for determinedness in extended
sponding resource node. behavior networks is the execution-valb@f a competence module
(see section 2.2). It reflects the expected utility for reaching the goals
of the agent as well as the executability of the behavior with respect
TR e - to the situation.
units, i.e. increase the number of used resource-units of the re- 1 nronlem of using the execution-value is that its absolute value
source node by the number of expected units the behavior Williehends on the goals defined in the behavior network. This is be-
use. causeh is a function of the sum of all activation received by the
3. If all tests in 2 succeeded goals it is contributing to directly or indirectly. In an extreme case
all effects of a behavior might be defined as goals resulting in a
high execution-value. In another network, none of the effects might
(b) Reset the activation thresholds of all resources used. be defined as goals and the module only receives activation indi-
4. Release all bound resource-units, i.e. reduce the number of boufi§Ctly through other modules. A parametrized behavior on the other
resource units of the resource node by the number of previousl?ide should be independent on the specific network architecture. It
bound units. Is therefore necessary to normalize the execution-value adequately.
5. Repeat from 1. Following we describe three approaches to map execution-values to
the codomain of0..1].
The activation thresholér.., ensures that the competence module One obvious approach to normalize the execution-value is to di-
with highest execution-value will be performetk.., linearly de-  vide it by the number of goalgj| of the behavior network. How-
creases over time so that eventually a module exceeds the threshader,|G| is not available within a competence module. A competence
and may be performed. If modules have equal execution-values in module only knows the number of goals it (directly or indirectly) re-
range ofA#, the threshold reduction, the module that first binds theceives activity from. Normalization by using division by the number
resource is performed. If the execution of the module with highesbf goals violates the locality principle and is therefore inappropriate.

1. Calculate the execution-valleof the module as described above.
2. For eachresourees used by competence modulestarting with
the previously unavailable resource

(b) Check if enough resource units are available in the current sit
uation, i.e. check ify < 7r(res,s). If so, bind the resource-

(a) Execute the corresponding behavior.



Another approach is to use the maxima) @nd minimal {) Since version 5 of the RoboCup-soccerserver, commands can be
execution-value. It can be calculated locally within a competencéxecuted concurrently, if they do not use the same resourcey A
module. The influence parameteof a module can then be calcu- command, for example, can be executed concurrently wiihla -,

lated as dash -, orturn -command and &urn _neck -command. The con-
_h— h 2 current execution of such actions should improve the speed and re-
p= h—h @) activity of an agent.

. . This has been examined in a series of 30 soccer-games. Two iden-
whereh is the current execution-value of the competence module,. ; .
: : - tical teams of 11 agents played against each other. The only differ-
This approach, however, is vulnerable to extremely high or low . . )
ence was that one team used concurrent behavior selection, while the

execution-values. . . . ;
: s ... _other team used serial action selection. For the serial team only the
This does not matter if instead of extreme values the distribution . L . o
. . . - . action with highest execution-value within a cycle was executed. The
of execution-values is taken into account. Assuming that execution- \ -
o e concurrent team’s agents were able to execute communication, head
values are normally distributed it is enough to calculate mea

L . . . r}urning and running or kicking actions concurrently. An example for

and standard deviation of the execution-values. Mapping execution- : .

values to an influence parameteis then done b competence modules the behaviors of which may be performed con-
P 1 y currently is shown in figure Irz has been defined independent of

the situation aSiegs = 2, Tneek = 1 aNdTpouern, = 1. Since no

0 : h<p—k-s commands using legs may be performed concurendiywas set to
p= }L—(Q;i-—gk.s) S u—k-s<h<pu+k-s (3) 2 for all behaviors using legs. _ - .
1. p+k-s<h The soccer agents turned their head in direction of the ball in case

the ball left the visible area of the agent (mindBall). This way the

wherek defines the range of the normal distribution that is mappedgent can run in an angle of up85° relative to the ball and keeping
to the interval[0..1]. The calculation ofz ands can be done incre- it in the visible area. Without turning the head this would only be
mentally: 45°. This is especially useful for all positioning behaviors. An agent
is only able to run forward and backward in body direction. If, for

fint1 = fin + h— pn and (4) example, an offender positions itself in the middle of the field while
n+1 the ball is on the wing it can run towards the goal while keeping
(n—1)- s the head turned to the ball. An agent that runs and turns the head in

Si+1 =m+1) (Hnt1 — Nn)2 + (5) consecutive cycles is much slower than an agent that is dashing each
ﬁycle and turns its head concurrently. Separate turning of the head
relative to the body was performed in about 8% of all cycles. This is
not surprising since turning the head is only necessary once the ball
is close to leave the visible area.

5 EMPIRICAL RESULTS Also the agents communicated to each other their position and

Empirical tests have been conducted in the RoboCup simulated sol?—OSItIOnS of some other_ playgrs (say_Posmon). The number of cycles
n agent can communicate is restricted to 4% of all cycles by the

cer environment. In this domain agents represent soccer players. )

Teams of eleven soccer players each play against each otherin a Siilqu?risse;\llli\r/vf drfst:;t ?fmkﬁﬂi(:]w'it:e?f Zg?or:gnécgltéoir;{ gglzg\ﬁr
ulated dynamic and continuous soccer domain. 9 Y 9 y y

The domain is dynamic from the perspective of a single agentversion 7 used for the experiments. The agents used a simple round

because 21 other agents change the domain without this agent doirh pin sched‘ullng that effectively allowed an agent to talk each 22
cles. Again the agents of the concurrent team were able to talk

anything. Also the decision cycle within which an agent has to decide” . s i :

is quite short (100ms). Within one decision cycle an agent may de\t-l;l]h'tlirl:]nm.ng r?rglﬁl.('?]g' Th(ta_ agt_ents of ﬁ?etierlatt)l tﬁ""”.‘ only talked if

cide for concurrent actions. Dashing, kicking or turning the agent’s Z‘niea\go; aie t I?n'ir agf It\llwaelﬁgaijs aa Odoenre i S(;'O;a communi-

body may be done concurrently with turning the agent's head and >INnce separ urning o was ! 0 uni
ation in 4% of the simulation cycles, concurrent behavior selection

talking to other agents. The RoboCup domain is therefore quite welf . . . .
suitedgfor testing%oncurrent behavio?selection q effectively only took place in 2% of the cycles. Despite this, the team

The domain is continuous in most of the underlying attributes using concurrent behavior selection scored significAmigre goals

Examples are the position and velocity of players and the ball an(Ijhan the team using serial behavior selection (see table 1).
the view and body direction of the agents. Also most actions of

n

Section 5.2 presents empirical results of behavior parametrizatio
gained in the RoboCup domain.

the agents are continuous. Dashing is done with variable strength, _
turning with continuous momentum and kicking with continuous serial | parallel | p (n = 30)
strength and direction. This makes the RoboCup domain an ideal Mean no of goals| 2.4 43 < 0.001

testbed for behavior parametrization.

. . Table 1. Comparison of serial and parallel behavior selection of EBNs in
5.1 Concurrent Behavior Selection the RoboCup domain.

Section 3 explained how extended behavior networks are able to
decide on multiple concurrent behaviors. This enables the agent to
reach a goal faster or to pursue multiple goals at once. This should
lead to improved behavior control of the agent especially in dynamic

domains where success also depends on the time an agent needs_ta
decide and act. 2 two samples t-test with: = 0.01.




Resource legs Resource mouth Resource neck

bound O bound O bound O
theta 1.2 theta 1.2 theta 1.2
If If haveSeenBall If maySaySomething If haveSeenBall
then relax and not ballKickable then sayPosition then mindBall
effect not lowStamina 0.3 and not teammatelsNearerBall effect teammatelnformed 1.0  effect haveSeenBall 0.8
using legs 2 and haveEnoughStamina using mouth 1 using neck 1
endif then runToBall endif endif

effect haveBall 0.5
and ballKickable 0.4
and lowStamina 0.3
using legs 2
endif

Figure 1. Parts of the network used for concurrent behavior selection in the RoboCup domain. Modules runToBall, sayPosition and mindBall may be
performed concurrently. Modules relax and runToBall use the same resource legs and may not be performed concurrently.

5.2 Behavior Parametrization exactly identical. For the distribution normalization we chbse 1.
As shown in table 2, the team with distribution normalization scored

In section 4 we described how the execution of behaviors may beignificantly more goals than the team with MinMax normalization.
influenced by the decidedness of the action selection. This can ensure

that the execution of a behavior is more appropriate to the current
situation. The intensity of behavior execution can be adjusted to the
importance of the current situation. The usage of resources is focused | mean number of goals 4.2 6.0 0.008
to these situations.

These effects can be shown by experiments in the RoboCup do-
main. Agents have limited stamina for running on the soccer field.
They have to make pauses in order to recover from running. If an
agent runs out of stamina it gets very slow. The faster an agent runs
the more stamina is consumed. For the experiments the ‘run to ball’
behavior has been parametrized. A normalized execution-value of
0.0 was translated to 60% dash power a value of 1.0 to a dash power . . i .
of 100% with linear interpolation. Relevance conditions in the goals®-2-2 Comparison of Parametrized and Static Behavior

(see [2]) ensure that the decidedness in important situations like bexs mentioned above, parametrized behavior execution should im-
ing close to one of the goals is high. This should ensure that the e the utilization of resource ‘stamina’ in the Robocup domain.
agent consumes less stamina in less important situations and hejis should improve the overall performance of a team measured
more stamina available in important situations. by the number of goals scored. This can be verified by experiments
running Robocup games where one team uses parametrized behav-
iors and the other does not (static). Normalization of execution-
values was done using the distribution method. The parameter for
Section 4 explained the need for normalization of the executionthe execution-value of the static team was constant during one game.
value. Two approaches have been mentioned that can be used férwas varied in the interval0..1], however, for different series of
normalization without violating the principle of locality. One pos- games. In this way parametrized behaviors can be compared with
sibility is to store the minimal and maximal execution-values of agrowing static parameter values. The hypothesis is that for low static
competence module and map it to the intefgall] (MinMax). An- values the disadvantage of being too slow (e.g. to reach a ball) out-
other possibility is to calculate the mean execution-valend its ~ Weighs the advantage of being less tired. For high static values the
standard deviation (incrementally). Then a range of values from disadvantage of fast exhaustion should outweigh the advantage of
w—k-stou+ k- s can be mapped to normalized execution-valuesbeing faster at the ball.
in the interval[0..1] (distribution). First it is interesting to look at the number of pauses an agent takes
Since MinMax normalization is vulnerable to extreme values oneduring a game. This is a measure for the consumption of stamina of
would expect to get worse results with this approach. This was emthe agent. As expected the number of pauses of the static team grows
pirically evaluated in 30 games of 2 Robocup soccer agent teamaVith increasing parameter values (Fig. 2).
One team played with MinMax normalization the other team played It is interesting to compare the two teams at the intersection of
with distribution normalization. Besides that both teams have beefoth curves at value 0.7. Although both teams’ agents have to make

MinMax | distribution | p (n = 30) ‘

Table 2. Comparison of the MinMax normalization and normalization
using the distribution of values.

5.2.1 Normalization of the Execution-Value
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the same number of pauses on average, the team with parametrizedFuture work will mainly have to examine if these results generalize

behaviors scored significantly more goals (Tab. 3). Although thgo other dynamic and continuous domains. Especially domains will
average usage of resources of both teams is equal the team wille interesting, where the amount of available resources depends on
parametrized behaviors makes more use out of it. It uses the rdéhe current situation. The stamina resource in the RoboCup domain
sources in situations in which the goals of the agent are more rekhat resembles how much 'energy’ is left for dashing can not be used
evant. In such situations the execution-values of behaviors directeith this sense, because although enough stamina would be available

towards such goals are higher.

Pstaticteam = 0.7 static | parametrized| p (n = 45) ‘
mean scored goals 8.9 11.2 0.003
mean number of pauses 130.6 130.2 0.950 ‘

for different behaviors the server does not allow concurrent dashing
behaviors.

Also it would be interesting to examine the stability of the pro-
posed concurrent behavior selection in cases where the estimated
amount of resources used by a competence module’s behavior may
differ from the effectively used resources. The behavior selection it-
self should still work in such occasions, the performance of the agent,
however, is expected to decrease.

Table 3. Comparison of the mean number of goals and pauses of players
of static (parametey = 0.7) and parametrized behavior execution.

(1]

The comparison of scored goals for the static and parametrizqu]
team shows significantly better results for the parametrized team for

all parameter values used for the static team (Fig. 3).
(3]

6 CONCLUSION (4]
In this paper, we describe a mechanism that can be used for an ager[wst]
to select multiple actions to be performed concurrently using ex-[6]
tended behavior networks. The concurrent action selection mecha-
nism is calculated distributively in the competence modules (nodes)[7
of the EBN. Conflicts between actions are moderated by resourcgg;
nodes that are explicitly represented in the EBNs. In addition, we
introduce a mechanism for EBNs to influence behavior execution us{9]
ing the execution-value of a competence module as a measure of { %]
decidedness of the agent to perform the action. Both extensions im-
proved the performance of agents in the RoboCup simulated soccer
domain significantly.
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