
Extended Behavior Networks for Behavior Selection in
Dynamic and Continuous Domains

Klaus Dorer1

Abstract. In this paper we present how behavior networks can be
extended to model behavior selection of agents in dynamic and con-
tinuous domains. More precisely, the focus is on a mechanism for
selection of concurrent behaviors by explicit representation of re-
sources a behavior makes use of. Further it describes how the be-
havior selection process can be coupled with behavior execution in
continuous domains. Behaviors may be influenced by the decided-
ness of the behavior selection as is the case in biological systems.
Empirical results in the RoboCup domain show that both extensions
improve the performance of soccer playing agents significantly.

1 INTRODUCTION

Behavior selection in dynamic domains is complicated by the fact
that the deciding agent has limited amount of time for its decision
before the situation has changed. This is usually addressed by im-
proving the speed of the decision mechanism for dynamic domains.
However, this does not take into account the possibility to improve
the agent’s performance by conducting multiple actions concurrently.
Moreover, in some domains, concurrent actions are not simply a way
of improving agents’ performance, but they can become a necessary
condition to perform tasks. For driving a car, for example, it is at least
necessary to turn the steering wheel and accelerate or break concur-
rently. Most action selection mechanisms result in a single action to
be performed. To overcome this limitation two possibilities exist: (1)
either the decision mechanism is provided with a (usually huge) set
of combined actions like ‘turnLeft’, ‘turnLeftAndBreak’, ‘turnLeft-
AndAccelerate’, etc., or (2) the decision mechanism decides on more
complex behaviors like ‘drive’ that combine actions appropriately
leaving the detailed decision to the execution module of the agent.
The later is usually the preferred option accepting the disadvantage
of more complex behaviors.

This situation is even complicated in continuous domains, where
actions may be performed with variable strength, degree, duration.
For example, the ‘turnLeft’ action of the above example would have
to be split into ‘turnLeft5Degrees’, ‘turnLeft10Degrees’, ... Again it
is usually preferred to put the decision of the degree with which an
action is performed into the low level behavior execution module.
Behavior selection and behavior execution is usually strictly sepa-
rated.

Extended behavior networks [2, 3] (EBNs) are a means to carry
out behavior selection in dynamic and continuous domains. They ex-
tend original behavior networks [5, 6, 7] by explicit representation
of goals with dynamic, i.e. situation-dependent, utility function and

1 Living Systems GmbH, Humboldtstrasse 11, D-78168 Donaueschingen
Germany, email: kdorer@living-systems.com

by the introduction of continuous state-propositions to represent at-
tributes of continuous domains. In this paper we describe how EBNs
are able to select multiple behaviors in a single decision cycle to
be performed concurrently. We also show how the decidedness of
behavior selection can be used to control the intensity with which
behaviors are performed as is the case in biological systems [4].

The remainder of this paper is organized as follows: Section 2 de-
scribes the basic concept of behavior selection using extended be-
havior networks. In section 3 this concept is extended by introducing
concurrent behavior selection. Section 4 explains how behaviors can
be parametrized by the decidedness of the behavior selection. In sec-
tion 5 we summarize empirical results gained in the RoboCup simu-
lated soccer domain. Finally, in section 6 we discuss possible future
work directions before concluding.

2 EXTENDED BEHAVIOR NETWORKS

Extended behavior networks [5, 2, 3] have been introduced to com-
bine reactive and goal-directed behavior selection in dynamic and
continuous domains. This section gives a short overview on the struc-
ture of extended behavior networks and the behavior selection mech-
anism using activation spreading. The next two sections will then
describe two further extensions of EBNs, selection of concurrent be-
haviors and behavior parametrization, to improve action selection in
dynamic and continuous domains.

2.1 Network Definition

Extended behavior networks consist of goals and so called compe-
tence modules that are linked into a network.

Definition 1 A goalconsists of a tuple (GCon, ι, RCon) with

• GConthegoal condition(conjunction of propositions, i.e. possibly
negated atoms), the situation in which the goal is satisfied,

• ι ∈ [0..1] the (static)importanceof the goal,
• RCon the relevance condition(conjunction and disjunction of

propositions), i.e. the situation-dependent (dynamic) importance
of the goal.

Definition 2 A competence moduleconsists of a tuple (Pre, b, Post,
a) with

• Prethepreconditionande = τP (Pre, s) theexecutabilityof the
competence module in situations whereτP (Pre, s) is the (fuzzy)
truth value of the precondition in situation s;

• b the behaviorthat is performed once the module is selected for
execution;

• Posta set of tuples (Eff,ex), where Eff is an expected effect (a
proposition) andex = P (Eff |Pre) is theprobabilityof Eff get-
ting true after execution of behaviorb,

• a theactivation∈ IR, representing a notion of the expected utility
of the behavior (see below).

Definition 3 An extended behavior network(EBN) consists of a tu-
ple (G,M, Π), whereG is a set of goals,M is a set of competence
modules andΠ is a set ofparametersthat control activation spread-
ing (see below)

• γ ∈ [0..1[controls the influence of activation of modules,
• δ ∈ [0..1[controls the influence of inhibition of modules,
• β ∈ [0..1[the inertia of activation across activation cycles,
• θ ∈ [0..â] the activation threshold that a module has to exceed to

be selected for execution, witĥa the upper bound for a module’s
activation,

• ∆θ ∈]0..θ] the threshold decay.

2.2 Behavior Selection

The decision of which behavior to adopt should be based on the the
expected utility out of executing such behavior. In EBNs, the ex-
pected utility of a behavior is approximated by a mechanism called
activation spreading. The competence modules are connected to the
goals and other competence modules of the network. Across those
links activation is spread from the goals to the competence modules
and among competence modules.

A competence module receivesactivationdirectly from a goal if
the module has an effect that is equal to a proposition of the goal
condition of that goal. The amount of activation depends on the prob-
ability ex of the effect to come true and the utility of the proposition
in the goal condition. Activation from a goal represents the expected
utility of the behavior to reach that goal. The utility of propositions
that are part of a goal condition can be directly derived from the im-
portance and relevance of the goal [2].

A competence module isinhibited by a goal if it has an effect
proposition that is equal to a proposition of the goal condition and
one of the two propositions is negated. Inhibition represents negative
expected utility and is used to avoid the execution of behaviors that
would lead to undesired effects.

A competence modulex is linked to another competence module
y if x has an effect that is equal to a proposition of the precondition
of y. y is called asuccessormodule ofx. Modulex gets activation
from the successor the amount of which depends on the utility of the
precondition and the probability of the effect to come true. The utility
of propositions that are not part of a goal condition is not available
directly. It can be determined indirectly using the activation of the
containing module and the truth value of the proposition [2]. In this
way, unsatisfied preconditions get implicit sub-goals of the network.
Their utility directly depends on the utility of the competence module
itself.

Finally a competence modulex is linked to another competence
moduley if it has an effect that is equal to a proposition of the pre-
condition ofy and one of the two propositions is negated.y is called
a conflictor of x, because it has an effect that destroys an already
satisfied precondition ofx. Again, a conflictor link fromx to y is
inhibiting (negative activation) to avoid undesired effects.

The activation of a modulek at timet is then the sum of all in-
coming activation and the previous activation of the module decayed

by β (defined in the set of parametersΠ):

at
k = βat−1

k +
∑

i

at
kgi

, (1)

whereat
kgi

is the maximal activation modulek receives at timet
from goal gi to which the module is linked directly or indirectly
across incoming successor and conflictor links of other competence
modules. For more details on activation spreading see [2, 3].

Behavior selection is done locally in each competence module in
a cycle containing the following steps:

1. Calculate the activationa of the module.
2. Calculate the executabilitye of the module.
3. Calculate the execution-valueh(a, e), which is a monotonically

increasing function of the activation and executability of a module
(calculated e.g. by multiplication) [2].

4. If the highest valueh(a, e) of all competence modules lies above
a thresholdθ (defined in the set of parametersΠ), execute the cor-
responding competence module’s behaviorb, resetθ to its original
value inΠ and go to 1.

5. Otherwise reduceθ by ∆θ (also defined inΠ) and go to 1.

In the first cycle of activation spreading, only competence modules
that directly have links to goals get activation. Activation by succes-
sor and conflictor links is zero at that time, because no module has
activation initially. So only behaviors that directly satisfy a goal will
be taken into account for selection. In the second cycle also com-
petence modules get activation that may reach the goal within two
actions. They got activation through successor and conflictor links to
modules that got activation in the first cycle. The more cycles activa-
tion is spread the longer is the (timely) horizon of action sequences
taken into account that lead to goals. This cyclic approximation of ex-
pected utility of a behavior in EBNs is somewhat similar to a growing
horizon when solving a Markov Decision Process (see e.g. [1]). For
behavior selection a good trade-off is therefore necessary between
running enough activation spreading cycles to look far enough into
the future and acting fast enough.

3 CONCURRENT BEHAVIOR SELECTION

A shortcoming of the above described mechanism for behavior se-
lection is that behavior selection results in a single behavior to be
performed at any time. Humans on the other side are able to per-
formed well trained behaviors concurrently if they do not use the
same resources [10, 8]. A typist, for example, is able to type a text
she is reading and speak aloud a text she is listening to at the same
time [10]. Performing behaviors that use the same resources usually
ends with no behavior performed successfully. For instance, when a
human is undecided between the words ’close’ and ’shut’ it may end
up pronouncing a non existing word ’clut’ [9]. The common resource
‘language processing’ may not be used by multiple behaviors. It may,
however, be influenced by multiple goals.

Sequential behavior selection of Maes networks [5] avoids the
problem of resource conflicts. The disadvantage is on the one side
a reduced performance in domains where multiple behaviors may be
performed in parallel. On the other side it may prevent the comple-
tion of tasks completely for which concurrent behavior execution is
essential (like car driving).

To perform multiple behaviors in parallel the agent needs knowl-
edge about the resources used by the behaviors. The definition of
competence modules and extended behavior networks has therefore
to be extended with the notion of resources.

LetR be the set of all resources andτR : R×S → IR+ a function
that assigns to each element ofR an amount of available resources
in the domain in state s. The functionτU : M×R×S → IR+, with
M the set of all competence modules, defines the expected amount
of resource units used by the corresponding competence module in
state s to reach its effects.

Definition 4 A resource nodeis a tuple (res, g, θRes) with

• res ∈ R theresourcerepresented by the node,
• g ∈ IR+ the amount ofbound resource units, i.e. units that are

bound by a currently executing competence module and
• θRes ∈]0..θ] the resource specificactivation threshold(whereθ

is the global activation threshold of the network).

The definition of a competence module can then be extended to:

Definition 5 A competence modulek consists of a tuple (Pre, b,
Post, Res, a) with Pre, b, Postand a as defined above andRes is
a set ofresourcesres ∈ R used by behaviorb. τU (k, res, s) is the
situation-dependent amount of resource units expected to be used by
behaviorb.

Definition 6 An extended behavior networkEBN consists of a tuple
(G,M,U , Π), whereG is a set of goals,M a set of competence
modules,U a set ofresource nodesand Π a set ofparameters(see
section 2).

To coordinate concurrent behaviors the competence modules of
M are connected with resource nodes inU . A competence module
has for each resourceres ∈ Resa link to the corresponding resource
node. This link enables the competence module to check the avail-
ability of the resource. Concurrent behavior selection may therefore
be calculated locally in each competence module. It is done in a cycle
containing the following steps:

1. Calculate the execution-valueh of the module as described above.
2. For each resourceres used by competence modulek, starting with

the previously unavailable resource

(a) Check ifh exceeds the activation thresholdθResi of the corre-
sponding resource node.

(b) Check if enough resource units are available in the current sit-
uation, i.e. check ifτU ≤ τR(res, s). If so, bind the resource-
units, i.e. increase the number of used resource-units of the re-
source node by the number of expected units the behavior will
use.

3. If all tests in 2 succeeded

(a) Execute the corresponding behavior.

(b) Reset the activation thresholds of all resources used.

4. Release all bound resource-units, i.e. reduce the number of bound
resource units of the resource node by the number of previously
bound units.

5. Repeat from 1.

The activation thresholdθResi ensures that the competence module
with highest execution-value will be performed.θResi linearly de-
creases over time so that eventually a module exceeds the threshold
and may be performed. If modules have equal execution-values in a
range of∆θ, the threshold reduction, the module that first binds the
resource is performed. If the execution of the module with highest

activation value is prevented by a missing resource, another module
with less activation not using the missing resource may be performed.
Modules with a disjunct set of resourcesRes may be performed con-
currently.

Besides allowing concurrent behavior selection, this algorithm
overcomes another limitation of original behavior networks. Behav-
ior selection has previously been done by selecting the most active
executable competence module for execution. Unfortunately, this in-
formation can not be calculated locally in a competence module.
Therefore, the process of action selection could not be calculated
distributively in each competence module. By introducing resource
nodes, a competence module is now able to perform action selection
locally. All information is available within the node or within linked
nodes. The information a competence module gets across a link to a
resource node is the current activation threshold and the number of
bound resource units. Information a resource node gets from a com-
petence module using the resource includes the number of resource
units to bind and release and when to reset activation threshold.

4 BEHAVIOR PARAMETRIZATION

Most decision mechanisms for agents only have influence on the
decision which behavior the agent should perform, but not on the
behavior execution itself. In biological systems, however, the deter-
minedness of a decision has influence on the execution of a behavior.
“Intensity and endurance of an activity is determined by the voli-
tion strength of the goal intention”[4]. Of course different intensities
(i.e. strength/degree of execution) of the same basic behavior could
also be modeled by distinguishing these as different behaviors and
let the decision mechanism decide between those. Obviously, at least
in continuous domains, this would increase the number of behav-
iors considerably making the decision process much more complex.
Therefore it would be desirable if the determinedness of the agent’s
decision would directly influence the execution of the behavior itself.
The behavior ‘run to ball’ of a soccer agent, for example, could be
more or less intens depending on the determinedness of the agent to
run. The higher the expected utility and the executability of the be-
havior the more effective it should be to spend resources (stamina) on
this behavior. An adequate measure for determinedness in extended
behavior networks is the execution-valueh of a competence module
(see section 2.2). It reflects the expected utility for reaching the goals
of the agent as well as the executability of the behavior with respect
to the situation.

The problem of using the execution-value is that its absolute value
depends on the goals defined in the behavior network. This is be-
causeh is a function of the sum of all activation received by the
goals it is contributing to directly or indirectly. In an extreme case
all effects of a behavior might be defined as goals resulting in a
high execution-value. In another network, none of the effects might
be defined as goals and the module only receives activation indi-
rectly through other modules. A parametrized behavior on the other
side should be independent on the specific network architecture. It
is therefore necessary to normalize the execution-value adequately.
Following we describe three approaches to map execution-values to
the codomain of[0..1].

One obvious approach to normalize the execution-value is to di-
vide it by the number of goals|G| of the behavior network. How-
ever,|G| is not available within a competence module. A competence
module only knows the number of goals it (directly or indirectly) re-
ceives activity from. Normalization by using division by the number
of goals violates the locality principle and is therefore inappropriate.

Another approach is to use the maximal (ĥ) and minimal (̌h)
execution-value. It can be calculated locally within a competence
module. The influence parameterp of a module can then be calcu-
lated as

p =
h− ȟ

ĥ− ȟ
(2)

whereh is the current execution-value of the competence module.
This approach, however, is vulnerable to extremely high or low
execution-values.

This does not matter if instead of extreme values the distribution
of execution-values is taken into account. Assuming that execution-
values are normally distributed it is enough to calculate mean
and standard deviation of the execution-values. Mapping execution-
values to an influence parameterp is then done by

p =

 0 : h < µ− k · s
h−(µ−k·s)

2k·s : µ− k · s ≤ h ≤ µ + k · s
1 : µ + k · s < h

(3)

wherek defines the range of the normal distribution that is mapped
to the interval[0..1]. The calculation ofµ ands can be done incre-
mentally:

µn+1 = µn +
h− µn

n + 1
and (4)

s2
n+1 = (n + 1) · (µn+1 − µn)2 +

(n− 1) · s2

n
(5)

Section 5.2 presents empirical results of behavior parametrization
gained in the RoboCup domain.

5 EMPIRICAL RESULTS

Empirical tests have been conducted in the RoboCup simulated soc-
cer environment. In this domain agents represent soccer players. Two
Teams of eleven soccer players each play against each other in a sim-
ulated dynamic and continuous soccer domain.

The domain is dynamic from the perspective of a single agent,
because 21 other agents change the domain without this agent doing
anything. Also the decision cycle within which an agent has to decide
is quite short (100ms). Within one decision cycle an agent may de-
cide for concurrent actions. Dashing, kicking or turning the agent’s
body may be done concurrently with turning the agent’s head and
talking to other agents. The RoboCup domain is therefore quite well
suited for testing concurrent behavior selection.

The domain is continuous in most of the underlying attributes.
Examples are the position and velocity of players and the ball and
the view and body direction of the agents. Also most actions of
the agents are continuous. Dashing is done with variable strength,
turning with continuous momentum and kicking with continuous
strength and direction. This makes the RoboCup domain an ideal
testbed for behavior parametrization.

5.1 Concurrent Behavior Selection

Section 3 explained how extended behavior networks are able to
decide on multiple concurrent behaviors. This enables the agent to
reach a goal faster or to pursue multiple goals at once. This should
lead to improved behavior control of the agent especially in dynamic
domains where success also depends on the time an agent needs to
decide and act.

Since version 5 of the RoboCup-soccerserver, commands can be
executed concurrently, if they do not use the same resources. Asay -
command, for example, can be executed concurrently with akick -,
dash -, or turn -command and aturn neck -command. The con-
current execution of such actions should improve the speed and re-
activity of an agent.

This has been examined in a series of 30 soccer-games. Two iden-
tical teams of 11 agents played against each other. The only differ-
ence was that one team used concurrent behavior selection, while the
other team used serial action selection. For the serial team only the
action with highest execution-value within a cycle was executed. The
concurrent team’s agents were able to execute communication, head
turning and running or kicking actions concurrently. An example for
competence modules the behaviors of which may be performed con-
currently is shown in figure 1.τR has been defined independent of
the situation asτlegs = 2, τneck = 1 andτmouth = 1. Since no
commands using legs may be performed concurently,τU was set to
2 for all behaviors using legs.

The soccer agents turned their head in direction of the ball in case
the ball left the visible area of the agent (mindBall). This way the
agent can run in an angle of up to135◦ relative to the ball and keeping
it in the visible area. Without turning the head this would only be
45◦. This is especially useful for all positioning behaviors. An agent
is only able to run forward and backward in body direction. If, for
example, an offender positions itself in the middle of the field while
the ball is on the wing it can run towards the goal while keeping
the head turned to the ball. An agent that runs and turns the head in
consecutive cycles is much slower than an agent that is dashing each
cycle and turns its head concurrently. Separate turning of the head
relative to the body was performed in about 8% of all cycles. This is
not surprising since turning the head is only necessary once the ball
is close to leave the visible area.

Also the agents communicated to each other their position and
positions of some other players (sayPosition). The number of cycles
an agent can communicate is restricted to 4% of all cycles by the
soccerserver to restrict the bandwidth of communication. Only one
agent is allowed to say something every second cycle in the server
version 7 used for the experiments. The agents used a simple round
robin scheduling that effectively allowed an agent to talk each 22
cycles. Again the agents of the concurrent team were able to talk
while running or kicking. The agents of the serial team only talked if
that behavior had higher activation as all other behaviors.

Since separate turning of the head was done in 8% and communi-
cation in 4% of the simulation cycles, concurrent behavior selection
effectively only took place in 2% of the cycles. Despite this, the team
using concurrent behavior selection scored significantly2 more goals
than the team using serial behavior selection (see table 1).

serial parallel p (n = 30)

Mean no of goals 2.4 4.3 < 0.001

Table 1. Comparison of serial and parallel behavior selection of EBNs in
the RoboCup domain.

2 two samples t-test withα = 0.01.

Figure 1. Parts of the network used for concurrent behavior selection in the RoboCup domain. Modules runToBall, sayPosition and mindBall may be
performed concurrently. Modules relax and runToBall use the same resource legs and may not be performed concurrently.

5.2 Behavior Parametrization

In section 4 we described how the execution of behaviors may be
influenced by the decidedness of the action selection. This can ensure
that the execution of a behavior is more appropriate to the current
situation. The intensity of behavior execution can be adjusted to the
importance of the current situation. The usage of resources is focused
to these situations.

These effects can be shown by experiments in the RoboCup do-
main. Agents have limited stamina for running on the soccer field.
They have to make pauses in order to recover from running. If an
agent runs out of stamina it gets very slow. The faster an agent runs
the more stamina is consumed. For the experiments the ‘run to ball’
behavior has been parametrized. A normalized execution-value of
0.0 was translated to 60% dash power a value of 1.0 to a dash power
of 100% with linear interpolation. Relevance conditions in the goals
(see [2]) ensure that the decidedness in important situations like be-
ing close to one of the goals is high. This should ensure that the
agent consumes less stamina in less important situations and has
more stamina available in important situations.

5.2.1 Normalization of the Execution-Value

Section 4 explained the need for normalization of the execution-
value. Two approaches have been mentioned that can be used for
normalization without violating the principle of locality. One pos-
sibility is to store the minimal and maximal execution-values of a
competence module and map it to the interval[0..1] (MinMax). An-
other possibility is to calculate the mean execution-valueµ and its
standard deviations (incrementally). Then a range of values from
µ− k · s to µ + k · s can be mapped to normalized execution-values
in the interval[0..1] (distribution).

Since MinMax normalization is vulnerable to extreme values one
would expect to get worse results with this approach. This was em-
pirically evaluated in 30 games of 2 Robocup soccer agent teams.
One team played with MinMax normalization the other team played
with distribution normalization. Besides that both teams have been

exactly identical. For the distribution normalization we chosek = 1.
As shown in table 2, the team with distribution normalization scored
significantly more goals than the team with MinMax normalization.

MinMax distribution p (n = 30)

mean number of goals 4.2 6.0 0.008

Table 2. Comparison of the MinMax normalization and normalization
using the distribution of values.

5.2.2 Comparison of Parametrized and Static Behavior

As mentioned above, parametrized behavior execution should im-
prove the utilization of resource ‘stamina’ in the Robocup domain.
This should improve the overall performance of a team measured
by the number of goals scored. This can be verified by experiments
running Robocup games where one team uses parametrized behav-
iors and the other does not (static). Normalization of execution-
values was done using the distribution method. The parameter for
the execution-value of the static team was constant during one game.
It was varied in the interval[0..1], however, for different series of
games. In this way parametrized behaviors can be compared with
growing static parameter values. The hypothesis is that for low static
values the disadvantage of being too slow (e.g. to reach a ball) out-
weighs the advantage of being less tired. For high static values the
disadvantage of fast exhaustion should outweigh the advantage of
being faster at the ball.

First it is interesting to look at the number of pauses an agent takes
during a game. This is a measure for the consumption of stamina of
the agent. As expected the number of pauses of the static team grows
with increasing parameter values (Fig. 2).

It is interesting to compare the two teams at the intersection of
both curves at value 0.7. Although both teams’ agents have to make

Figure 2. Mean number of pauses of the static and parametrized team

the same number of pauses on average, the team with parametrized
behaviors scored significantly more goals (Tab. 3). Although the
average usage of resources of both teams is equal the team with
parametrized behaviors makes more use out of it. It uses the re-
sources in situations in which the goals of the agent are more rel-
evant. In such situations the execution-values of behaviors directed
towards such goals are higher.

pstaticteam = 0.7 static parametrized p (n = 45)

mean scored goals 8.9 11.2 0.003

mean number of pauses 130.6 130.2 0.950

Table 3. Comparison of the mean number of goals and pauses of players
of static (parameterp = 0.7) and parametrized behavior execution.

The comparison of scored goals for the static and parametrized
team shows significantly better results for the parametrized team for
all parameter values used for the static team (Fig. 3).

6 CONCLUSION

In this paper, we describe a mechanism that can be used for an agent
to select multiple actions to be performed concurrently using ex-
tended behavior networks. The concurrent action selection mecha-
nism is calculated distributively in the competence modules (nodes)
of the EBN. Conflicts between actions are moderated by resource
nodes that are explicitly represented in the EBNs. In addition, we
introduce a mechanism for EBNs to influence behavior execution us-
ing the execution-value of a competence module as a measure of the
decidedness of the agent to perform the action. Both extensions im-
proved the performance of agents in the RoboCup simulated soccer
domain significantly.

Figure 3. Mean number of goals of the static and parametrized team

Future work will mainly have to examine if these results generalize
to other dynamic and continuous domains. Especially domains will
be interesting, where the amount of available resources depends on
the current situation. The stamina resource in the RoboCup domain
that resembles how much ’energy’ is left for dashing can not be used
in this sense, because although enough stamina would be available
for different behaviors the server does not allow concurrent dashing
behaviors.

Also it would be interesting to examine the stability of the pro-
posed concurrent behavior selection in cases where the estimated
amount of resources used by a competence module’s behavior may
differ from the effectively used resources. The behavior selection it-
self should still work in such occasions, the performance of the agent,
however, is expected to decrease.

References
[1] C. Boutilier, T. Dean, and S. Hanks, ‘Decision–theoretic planning:

Structural assumptions and computational leverage’,Journal of Arti-
ficial Intelligence Research, 11, 1–94, (1999).

[2] K. Dorer, ‘Behavior networks for continuous domains using situation–
dependent motivations’,Proceedings of the Sixteenth International
Conference of Artificial Intelligence, 1233–1238, (1999).

[3] K. Dorer, Motivation, Handlungskontrolle und Zielmanagement in au-
tonomen Agenten, PhD thesis, Albert-Ludwigs University, Freiburg,
2000.

[4] H. Heckhausen,Motivation und Handeln, Springer, Berlin, 1989.
[5] P. Maes, ‘The dynamics of action selection’,Proceedings of the Inter-

national Joint Conference on Artificial Intelligence, 991–997, (1989).
[6] P. Maes, ‘How to do the right thing’,Connection Science Journal, 1(3),

(1990).
[7] P. Maes, ‘Situated agents can have goals’,Journal for Robotics and

Autonomous Systems, 6(1), 49–70, (1990).
[8] D. Navon and D. Gopher, ‘On the economy of the human processing

system’,Psychological Review, 86(3), 214–255, (1979).
[9] D. A. Norman, ‘Categorization of action slips’,Psychological Review,

88(1), 1–15, (1981).
[10] L. H. Shaffer, ‘Multiple attention in continuous verbal tasks’, inAtten-

tion and Performance V, eds., P. M. A. Rabbit and S. Dornic, Academic
Press, New York, (1975).

