
The magmaOffenburg 2017 RoboCup 3D
Simulation Team

Martin Baur, Klaus Dorer, Jens Fischer, Duy Nguyen, Carmen Schmider,
David Weiler1

Hochschule Offenburg, Elektrotechnik-Informationstechnik, Germany

Abstract. In this TDP we describe a new tool created for testing the
strategy layer of our soccer playing agents. It is a complete 2D simulator
that simulates the games based on the decisions of 22 agents. With this
tool, debugging the decision and strategy layer of our agents is much more
efficient than before due to various interaction methods and complete
control over the simulation.
In the future, the tool could also serve as a measure to run simulations
of game series much faster than with the 3D simulator. This way, the
impact of different play strategies could be evaluated much faster than
before.

1 Introduction

In the first years after the 3D simulation league was introduced, the main focus
rested on implementing and optimizing low-level behaviors such as walk or kick
behaviors. Over the years, as these basic behaviors advanced to a fairly robust
state, teams started implementing high-level behaviors like positioning and team
play.

As the focus of the league shifts slowly but surely from successfully executing
low-level behaviors to strategies and decision-making, tools for the development
of the latter become more important. One such tool is our newly created “2D
strategy simulator”.

Success in RoboCup always has been closely related to the value of tools
that help to define and understand what the agents are or should be doing. The
success of CMUnited 1999 in 2D simulation came along with a new debugging
tool providing layerd disclosure of agents [1]. A more closely related tool to
the one we present here is PlayMaker of FC Portugal [2] that can be used to
define strategies and setplays of agents. It is however, to our knowledge, not
containing a simulator that runs the decision loop of agents. UT Austin Villa
uses RoboViz [4] to visualize the role assignment and marking in their team [3].

2 Motivation

Why is a new simulator needed as a tool for developing strategies? What benefits
does it have over using the already exisiting 3D simulator?

There are several reasons for this, the two main ones being:



– Simulations in the 3D simulator are expensive, a modern CPU can barely
run it in real-time with 22 players. Running it faster than real-time would be
desirable in some scenarios, but even if performance allowed it, the results
would not be consistent due to the architecture of the 3D simulator.

– The 3D simulator is inherently non-deterministic. This can be painful when
trying to reproduce certain bugs during development, where determinism is
desired.

For these reasons, we have had a “Simulator View” in our development tool
called magmaDeveloper for several years (Fig. 1). It presents a soccer field with
22 players and a ball, allowing the user to manually arrange certain situations
with drag-and-drop. While he does so, our decision making logic is automatically
executed in the background, so changes in decision-making are displayed to the
user instantly via various renderers. This includes information like:

– desired positon
– desired behavior
– current role in our strategy
– best kick options
– etc.

Since all agent instances are running in the same Java process together with
magmaDeveloper, it’s easy to set a breakpoint in the decision-making logic of
a particular player. Such a breakpoint will be hit after any interaction occurs,
because this triggers another execution of the decision-making logic.

While this has been an incredibly valuable tool so far, it does have one major
limitation: due to all interaction happening manually, it was very static. Because
of this, it was sometimes difficult to imagine what a strategy would look like in
a real game, where players can “move on their own”.

This is why we decided to expand upon this idea and implement a real
simulator on top of this existing view. The simulator component was to be heavily
simplified compared to the 3D Simulator, turning it into a 2D simulation with
only a few basic commands for walking, kicking and beaming to certain x and y
coordinates.

3 Architecture

The new strategy simulator consists of three main components as can be observed
in Fig. 2.

Here is a quick overview of what each component is responsible for:

– Simulator - The actual simulator that holds all the state (player and ball
positions, playmode, fouls, etc...). It is updated 50 times per second to exe-
cute the behaviors that the individual players want to perform this cycle and
enforces the rules of the simulation.



Fig. 1. The old simulator view in magmaDeveloper with the roles renderer active.

– MagmaSimulator - Not an actual “simulator” as the name might suggest,
but rather the “glue code” between agent runtimes representing a single
agent and the simulator. This means it extracts information about what
behavior to execute and informs the simulator about it, as well as updating
the internal state of the agent runtime to reflect the new player and ball
positions after a cycle.

– Simulator View - The simulator view is the Java Swing GUI that renders
various information from agent runtimes, MagmaSimulator and Simulator.
It already existed before, but has been updated to be compatible with the
changed architecture and to support the new features.

4 Features

Fig. 3 shows the new simulator view, the biggest difference to the old one being
a “Play”-button that can be used to start or pause/resume the simulation. A
spinner component can be used to control the desired speed of the simulation,
which is a big improvement compared to the 3D simulator.

Each cycle, the complete state of the simulator is copied into a history, which
enables rewinding the simulation to an arbitrary previous state, and picking up
again from there. This is invaluable for debugging purposes, as the same situation
can be observed again and again almost as if looking at a log file. In an even
more advanced use case, the user might decide to set a breakpoint in the decision-
making logic of the agent, make some changes and let the IDE hot-swap that
code into JVM - all at runtime without a need to restart the tool. Like this,



Fig. 2. The main components of the strategy simulator.

the changes in behavior can be observed right away, allowing for rapid iteration
times.

The history can even be saved to and loaded from a file, in case one of our
team members has found a bug and wants to give another team member an easy
means of reproducing it.

The simulation itself is designed to be as similar as possible to the high-level
behavior of games in the 3D simulator. One of the measures we took to achieve
this was to port relevant playmodes and fouls directly from the 3D simulator’s
soccerruleaspect.cpp . Some playmodes like free kicks were left out, since they
are only used by a human referee. The only fouls that were ported are those
related to player-positioning fouls, namely “crowding” and “illegal defence”.

The walk speeds are provided by the so-called WalkEstimator -component of
our agent runtime, which contains walk speeds measured in the 3D simulation.
There are no additional checks performed by the strategy simulator to see if the
walk speeds are viable or not. Similarly, we measured probability distributions
for all the kicks we use (and separately for Nao and NaoToe) to achieve realistic
kick distances and angles.

A kick can be considered “unstable”, meaning that the player falls down
after performing it and becomes inactive (greyed out in the view) for the time
it normally takes him to get up (around 2 seconds).

Kicks are the only thing that has any noise associated with it. Each player
has a global view and knows the exact position of all players and the ball at all
times. Despite kick noise, the simulation is still completely deterministic, and
the seed passed to the random number generator (RNG) can be changed. When
copying the simulator state for the history, the initial RNG seed is saved along
with the number of invocations so far, making the randomness reproducible.



Fig. 3. The new simulator view with the desired positions renderer active.

5 Results

With the new strategy simulator, we have a very promising tool which we hope
can help us develop better strategies in the future. Already, its development led
to several interesting observations that revealed optimization possibilites in our
agent runtime. One example for this is the kick distance probability distribution
we measured for our 15m kick (Fig. 4). There is a distinct spike around 0m for
NaoToe, which suggests NaoToe’s 15m kick is significantly less reliable than its
counterpart. The curve also shows a slight dent at around 13m.

From the start, one of the objectives for the strategy simulator was to provide
a faster way to play game series. Game series are a valabule tool for evaluating
changes to agent behavior, but are very costly when it comes to time. A game
series with 100 games typically takes around 22 hours in the 3D simulator in
case of serial game runs.

In the strategy simulator, the bottleneck is no longer the simulator itself, but
updating the agent runtimes. We were able to easily parallelize this step, since
the updates are not dependent on each other. In theory, we could benefit from
up to 22 CPU cores this way, but with only 4, a single game already only takes
around 20 seconds. This allows playing 1000 games in 5 to 6 hours, making it
roughly 40 times as fast as game series in the 3D simulator. Note that we created



Fig. 4. Kick distance probability distribution for Nao (left) and NaoToe (right).

a separate command line interface for the strategy simulator, which is slightly
more optimized than the version with a GUI running in magmaDeveloper.

Unfortunately, it seems like results from strategy simulator game series are
currently not indicative of a similar performance in the 3D simulator. To evaluate
this, we played game series of our “ManToManMarker” strategy against all other
defined strategies, both in the 3D and strategy simulator. The results can be seen
in Table 1. Series in rcsserver3d consisted of 100 games, series in the strategy
simulator of 1000.

ManToManMarker vs ... rcssserver3d Stategy Simulator

NoWingJustAcceptor 0.440 - 0.240 0.838 - 0.736

Acceptor 0.490 - 0.290 0.820 - 0.845

BallReceiver 0.600 - 0.250 0.913 - 0.878

Table 1. Game series in rcssserver3d and strategy simulator

Two things can be observed here: the results of the “ManToManMarker vs
Acceptor” game are contradictory, and in general, the goal difference seems to
be much smaller in the strategy simulator.

In the future, we hope to eliminate as many discrepancies as possible between
the behavior of strategies in the two simulators. If we succeed in doing so, it
should give us a way to significantly speed up iteration times when it comes to
testing new strategies or changes to existing ones.

Layered Disclosure: Revealing Agents’ Internals



References

1. Patrick Riley, Peter Stone, and Manuela Veloso (2000) Layered Disclosure: Revealing
Agents’ Internals. In C. Castelfranchi and Y. Lesprance, editors, Intelligent Agents
VII. Agent Theories, Architectures, and Languages — 7th. International Works-
hop, ATAL-2000, Boston, MA, USA, July 7–9, 2000, Proceedings, Lecture Notes in
Artificial Intelligence, Springer-Verlag, Berlin, Berlin, 2001.

2. R. Lopes, L. Mota, L. P. Reis, and N. Lau (2010) Playmaker: Graphical Definition
of Formations and Setplays. In: Information Systems and Technologies (CISTI), pp.
1–6.

3. Patrick MacAlpine and Peter Stone (2016) Prioritized Role Assignment for Marking.
In Sven Behnke, Daniel D. Lee, Sanem Sariel, and Raymond Sheh, editors, RoboCup
2016: Robot Soccer World Cup XX, Lecture Notes in Artificial Intelligence, Springer
Verlag, Berlin.

4. Justin Stoecker, and Ubbo Visser (2012) RoboViz: Programmable Visualization for
Simulated Soccer. In Röfer, Thomas and Mayer, N. Michael and Savage, Jesus and
Saranlı, Uluc (eds.) RoboCup 2011: Robot Soccer World Cup XV, Springer Berlin
Heidelberg, pp. 282–293.

5. https://github.com/magmaOffenburg


